Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
These are my lecture notes from CS681: Design and Analysis of Algo rithms, a one-semester graduate course I taught at Cornell for three consec utive fall semesters from '88 to '90. The course serves a dual purpose: to cover core material in algorithms for graduate students in computer science preparing for their PhD qualifying exams, and to introduce theory students to some advanced topics in the design and analysis of algorithms. The material is thus a mixture of core and advanced topics. At first I meant these notes to supplement and not supplant a textbook, but over the three years they gradually took on a life of their own. In addition to the notes, I depended heavily on the texts * A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms. Addison-Wesley, 1975. * M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness. w. H. Freeman, 1979. * R. E. Tarjan, Data Structures and Network Algorithms. SIAM Regional Conference Series in Applied Mathematics 44, 1983. and still recommend them as excellent references.
The aim of this textbook is to provide undergraduate students with an introduction to the basic theoretical models of computability, and to develop some of the model's rich and varied structure. Students who have already some experience with elementary discrete mathematics will find this a well-paced first course, and a number of supplementary chapters introduce more advanced concepts. The first part of the book is devoted to finite automata and their properties. Pushdown automata provide a broader class of models and enable the analysis of context-free languages. In the remaining chapters, Turing machines are introduced and the book culminates in discussions of effective computability, decidability, and Gödel's incompleteness theorems. Plenty of exercises are provided, ranging from the easy to the challenging. As a result, this text will make an ideal first course for students of computer science.
These are my lecture notes from CS681: Design and Analysis of Algo rithms, a one-semester graduate course I taught at Cornell for three consec utive fall semesters from '88 to '90. The course serves a dual purpose: to cover core material in algorithms for graduate students in computer science preparing for their PhD qualifying exams, and to introduce theory students to some advanced topics in the design and analysis of algorithms. The material is thus a mixture of core and advanced topics. At first I meant these notes to supplement and not supplant a textbook, but over the three years they gradually took on a life of their own. In addition to the notes, I depended heavily on the texts * A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms. Addison-Wesley, 1975. * M. R. Garey and D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness. w. H. Freeman, 1979. * R. E. Tarjan, Data Structures and Network Algorithms. SIAM Regional Conference Series in Applied Mathematics 44, 1983. and still recommend them as excellent references.
This textbook is uniquely written with dual purpose. It cover cores material in the foundations of computing for graduate students in computer science and also provides an introduction to some more advanced topics for those intending further study in the area. This innovative text focuses primarily on computational complexity theory: the classification of computational problems in terms of their inherent complexity. The book contains an invaluable collection of lectures for first-year graduates on the theory of computation. Topics and features include more than 40 lectures for first year graduate students, and a dozen homework sets and exercises.
This textbook provides undergraduate students with an introduction to the basic theoretical models of computability, and develops some of the model's rich and varied structure. The first part of the book is devoted to finite automata and their properties. Pushdown automata provide a broader class of models and enable the analysis of context-free languages. In the remaining chapters, Turing machines are introduced and the book culminates in analyses of effective computability, decidability, and Goedel's incompleteness theorems. Students who already have some experience with elementary discrete mathematics will find this a well-paced first course, and a number of supplementary chapters introduce more advanced concepts.
|
You may like...
|