Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB (R) is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.
The focus of this book lies at the meeting point of electromagnetic waveguides and photonic crystals. Although these are both widely studied topics, they have been kept apart until recently. The purpose of the first edition of this book was to give state-of-the-art theoretical and numerical viewpoints about exotic fibres which use "photonic crystal effects" and consequently exhibit some remarkable properties. Since that first edition, photonic crystal fibres have become an important and effective optical device. In this second edition, the description of the theoretical and numerical tools used to study these fibres is enhanced, whilst up-to-date information about the properties, applications and fabrication of these fibres is added.
This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB (R) is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.
The domain of metamaterials now covers many area of physics: electromagnetics, acoustics, mechanics, thermics, or even seismology. Huge literature is now available on the subject but the results are scattered. Although many ideas and possible applications have been proposed, which of these will emerge as a viable technology will only unfold with time. This book covers the fundamental science behind metamaterials, from the physical, mathematical, and numerical points of view, focusing mainly on methods. It concentrates on electromagnetic waves, but would also be useful in studying other types of metamaterials. It presents the structure of Maxwell equations, discusses the homogenization theory in detail, and includes important problems on resonance. It has an entire section devoted to numerical methods (finite elements, Fourier modal methods, scattering theory), which aims to motivate a reader to implement them. The book is not written as a collection of independent chapters but as a textbook with a strong pedagogical flavor.
|
You may like...Not available
|