Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Inthepresentvolumethemainaspectsofhigh-powerlaser-matterinteractionin 10 22 2 theintensityrange10 -10 W/cm aredescribed. Weofferaguidetothistopic forscientistsandstudentswhohavejustdiscoveredthe eldasanewandattractive areaofresearch,andforscientistswhohaveworkedinanother eldandwantto joinnowthesubjectoflaserplasmas. Beingawareofthewidedifferencesinthe degreeofmathematicalpreparationtheindividualcandidatehasacquiredwetried topresentthesubjectinanalmostself-containedmanner. Tobemorespeci c,a bachelordegreeinphysicsenablesthereaderinanycasetofollowwithoutdi- culty. Generally uidorgasdynamicsanditsrelativisticversionisnotapartof thiseducation;itisdevelopedinthecontextwhereitisneeded. Basicknowledgein theoreticalmechanics,electrodynamicsandquantumphysicsaretheonlyprereq- sitesweexpectfromthereader. Throughoutthebookthemainemphasisisonthe variousbasicphenomenaandtheirunderlyingphysics. Notmoremathematicsthan necessaryisintroduced. Thepreferenceisgiventoideas. Agoodmodelisthebest guidetotheadequatemathematics. Thereexistalreadysomebutnotsomany, however, goodvolumesandsome monographsonhigh-powerlaserinteractionwithmatter. Afterresearchinthis eld hasgrownoverhalfacenturyandhasrami edintomanybranchesoffundamental studiesandapplicationsproducingcontinuouslynewresults,thereisnoindication ofsaturationorlossofattraction,ratherhasexcitementincreasedwiththeyears: "Therearenolimits;horizonsonly"(G. A. Mourou). Wetakethisasamotivation foranewattemptofpresentingourintroductiontotheachievementsfromthebeg- ninguptopresent. Anadditionalaimwastoofferamoreuni edormoredetailed viewwherethisispossiblenow. Furthermore,thereadermay ndconsiderations not encountered in existing volumes on the eld, e. g. , on ideal uid dynamics, dimensionalanalysis,questionsofclassicaloptics,instabilitiesandlightpressure. Inviewoftherapidlygrowing eldofatoms,moleculesandclustersexposedto superstronglaser eldsweconsidereditascompulsorytodedicateanentirechapter tolaser-atominteractionandtothevariousmoderntheoreticalapproachesrelated toit. Finally,aconsistentmodelofcollisionlessabsorptionisgiven. Dependingonpersonalpreferencesthereadermaymissperhapsasectionon inertialfusion,onhighharmonicgenerationandonradiationfromtheplasma,or ontraditionalatomicandionicspectroscopy. Inviewofthespecializedliterature vii viii Preface alreadyavailableonthesubjectswethinktheself-imposedrestrictionisjusti ed. Ourreferencingpracticewasguidedbyindicatingmaterialforsupplementaryst- iesandestablishingacontinuitythroughthedecadesofresearchinthe eldrather thanbytheaimofcompleteness. Thelatternowadaysiseasilyachievablewiththe aidoftheInternet. Wehavetestedthetextwithrespecttocomprehensionandreadability. Our rst thanksgotoProf. EdithBoriefromtheForschungszentrumKarlsruhe. Shepro- readgreatpartsofthetextverycarefullyandgavevaluablecomments. Insecond placewewouldliketothankMrs. ChristineEidmannfromTheoreticalQuantum A Electronics (TQE), TU Darmstadt, for typing in LTX half of the book. We are E furtherindebtedtoProf. RudolfBockfromGSI,Darmstadt,forhelpfuldiscussions andprecioushints. Furtherthanksforhelpfuldiscussions,criticalcomments,che- ingformulasgotoDr. HerbertSchnabl,Prof. WernerScheid,Dr. RalfSchneider, Dipl. -Phys. TatjanaMuth,Dr. SteffenHain,andDr. FrancescoCeccherini. Wewant toacknowledgeexplicitlythecontinuouseffortandsupportinpreparingthe nal manuscript by Dr. Su-Ming Weng from the Insitute of Physics, CAS, China, at presentfellowoftheHumboldtFoundationatTQE. Forhisprofessionalinputto thesectiononBrillouinscatteringspecialthanksgotoDr. StefanHullerfromEcole PolytechniqueinPalaiseau. Darmstadt,Germany PeterMulser Rostock,Germany DieterBauer Contents 1 Introductory Remarks and Overview ...1 2 The Laser Plasma: Basic Phenomena and Laws...5 2. 1 Laser-ParticleInteractionandPlasmaFormation...6 2. 1. 1 High-PowerLaserFields...6 2. 1. 2 SingleFreeElectronintheLaserField(Nonrelativistic). . 9 2. 1. 3 CollisionalIonization,PlasmaHeating,andQuasineutrality 13 2. 2 FluidDescriptionofaPlasma...24 2. 2. 1 Two-FluidandOne-FluidModels...24 2. 2. 2 LinearizedMotions...37 2. 2. 3 SimilaritySolutions...44 2. 3 LaserPlasmaDynamics...58 2. 3. 1 PlasmaProductionwithIntenseShortPulses ...60 2. 3. 2 HeatingwithLongPulsesofConstantIntensity...63 2. 3. 3 SimilarityConsiderations...69 2. 4 SteadyStateAblation...74 2. 4. 1 TheCriticalMachNumberinaStationaryPlanarFlow...75 2. 4. 2 AblativeLaserIntensity...78 2. 4. 3 AblationPressureintheAbsenceofPro leSteepening...82 References...85 3 Laser Light Propagation and Collisional Absorption ...
This graduate textbook introduces the com-putational techniques to study ultra-fast quantum dynamics of matter exposed to strong laser fields. Coverage includes methods to propagate wavefunctions according to the time dependent Schroedinger, Klein-Gordon or Dirac equation, the calculation of typical observables, time-dependent density functional theory, multi configurational time-dependent Hartree-Fock, time-dependent configuration interaction singles, the strong-field approximation, and the microscopic particle-in-cell approach. Contents How to propagate a wavefunction? Calculation of typical strong-field observables Time-dependent relativistic wave equations: Numerics of the Dirac and the Klein-Gordon equation Time-dependent density functional theory The multiconfiguration time-dependent Hartree-Fock method Time-dependent configuration interaction singles Strong-field approximation and quantum orbits Microscopic particle-in-cell approach
The present book is the account of a workshop on Integrated Optics and Micro-Optics with Polymers held in spring 1992 at Mainz and organized by IMM Institute of Microtechnology GmbH, the Max Planck Institute of Poly mer Research, and the Institute of Applied Physics of Friedrich Schiller University at Jena. The field of Integrated Optics and Micro-Optics with Polymers is receiving growing interest from multiple sides. Among the important reasons are the potential of tailoring materials for a specific application, the easy and cheap availability of those materials, and the possibilities of mass fabrica tion with plastiCS. Accordingly, materials researchers, microtechnologists, process engineers, and device builders are active in this field. Their interest is fed from prospective applications of integrated or micro-optical devices and systems in telecommunication, sensors, optical switching and routing, and, in a more distant future, optical processing. The workshop succeeded to bring together more than 130 experimenta lists and theorists, physicists and chemists, device developers and users, materials researchers and process engineers, as well as polymer scien tists and those dealing with anorganic materials, coming from industry, research institutes, and universities."
|
You may like...
|