0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (5)
  • -
Status
Brand

Showing 1 - 5 of 5 matches in All Departments

Steiner Minimal Trees (Hardcover, 1998 ed.): Dietmar Cieslik Steiner Minimal Trees (Hardcover, 1998 ed.)
Dietmar Cieslik
R4,332 Discovery Miles 43 320 Ships in 12 - 17 working days

The problem of "Shortest Connectivity," which is discussed here, has a long and convoluted history. Many scientists from many fields as well as laymen have stepped on its stage. Usually, the problem is known as Steiner's Problem and it can be described more precisely in the following way: Given a finite set of points in a metric space, search for a network that connects these points with the shortest possible length. This shortest network must be a tree and is called a Steiner Minimal Tree (SMT). It may contain vertices different from the points which are to be connected. Such points are called Steiner points. Steiner's Problem seems disarmingly simple, but it is rich with possibilities and difficulties, even in the simplest case, the Euclidean plane. This is one of the reasons that an enormous volume of literature has been published, starting in 1 the seventeenth century and continuing until today. The difficulty is that we look for the shortest network overall. Minimum span ning networks have been well-studied and solved eompletely in the case where only the given points must be connected. The novelty of Steiner's Problem is that new points, the Steiner points, may be introduced so that an intercon necting network of all these points will be shorter. This also shows that it is impossible to solve the problem with combinatorial and geometric methods alone."

Shortest Connectivity - An Introduction with Applications in Phylogeny (Hardcover, 2005 ed.): Dietmar Cieslik Shortest Connectivity - An Introduction with Applications in Phylogeny (Hardcover, 2005 ed.)
Dietmar Cieslik
R2,947 Discovery Miles 29 470 Ships in 10 - 15 working days

The aim in this graduate level text is to outline the key mathematical concepts that underpin these important questions in applied mathematics. These concepts involve discrete mathematics (particularly graph theory), optimization, computer science, and several ideas in biology.

The Steiner Ratio (Hardcover, 2001 ed.): Dietmar Cieslik The Steiner Ratio (Hardcover, 2001 ed.)
Dietmar Cieslik
R2,935 Discovery Miles 29 350 Ships in 10 - 15 working days

Steiner's Problem concerns finding a shortest interconnecting network for a finite set of points in a metric space. A solution must be a tree, which is called a Steiner Minimal Tree (SMT), and may contain vertices different from the points which are to be connected. Steiner's Problem is one of the most famous combinatorial-geometrical problems, but unfortunately it is very difficult in terms of combinatorial structure as well as computational complexity. However, if only a Minimum Spanning Tree (MST) without additional vertices in the interconnecting network is sought, then it is simple to solve. So it is of interest to know what the error is if an MST is constructed instead of an SMT. The worst case for this ratio running over all finite sets is called the Steiner ratio of the space. The book concentrates on investigating the Steiner ratio. The goal is to determine, or at least estimate, the Steiner ratio for many different metric spaces. The author shows that the description of the Steiner ratio contains many questions from geometry, optimization, and graph theory. Audience: Researchers in network design, applied optimization, and design of algorithms.

Steiner Minimal Trees (Paperback, Softcover reprint of hardcover 1st ed. 1998): Dietmar Cieslik Steiner Minimal Trees (Paperback, Softcover reprint of hardcover 1st ed. 1998)
Dietmar Cieslik
R4,241 Discovery Miles 42 410 Ships in 10 - 15 working days

The problem of "Shortest Connectivity," which is discussed here, has a long and convoluted history. Many scientists from many fields as well as laymen have stepped on its stage. Usually, the problem is known as Steiner's Problem and it can be described more precisely in the following way: Given a finite set of points in a metric space, search for a network that connects these points with the shortest possible length. This shortest network must be a tree and is called a Steiner Minimal Tree (SMT). It may contain vertices different from the points which are to be connected. Such points are called Steiner points. Steiner's Problem seems disarmingly simple, but it is rich with possibilities and difficulties, even in the simplest case, the Euclidean plane. This is one of the reasons that an enormous volume of literature has been published, starting in 1 the seventeenth century and continuing until today. The difficulty is that we look for the shortest network overall. Minimum span ning networks have been well-studied and solved eompletely in the case where only the given points must be connected. The novelty of Steiner's Problem is that new points, the Steiner points, may be introduced so that an intercon necting network of all these points will be shorter. This also shows that it is impossible to solve the problem with combinatorial and geometric methods alone."

The Steiner Ratio (Paperback, Softcover reprint of hardcover 1st ed. 2001): Dietmar Cieslik The Steiner Ratio (Paperback, Softcover reprint of hardcover 1st ed. 2001)
Dietmar Cieslik
R2,827 Discovery Miles 28 270 Ships in 10 - 15 working days

Steiner's Problem concerns finding a shortest interconnecting network for a finite set of points in a metric space. A solution must be a tree, which is called a Steiner Minimal Tree (SMT), and may contain vertices different from the points which are to be connected. Steiner's Problem is one of the most famous combinatorial-geometrical problems, but unfortunately it is very difficult in terms of combinatorial structure as well as computational complexity. However, if only a Minimum Spanning Tree (MST) without additional vertices in the interconnecting network is sought, then it is simple to solve. So it is of interest to know what the error is if an MST is constructed instead of an SMT. The worst case for this ratio running over all finite sets is called the Steiner ratio of the space. The book concentrates on investigating the Steiner ratio. The goal is to determine, or at least estimate, the Steiner ratio for many different metric spaces. The author shows that the description of the Steiner ratio contains many questions from geometry, optimization, and graph theory. Audience: Researchers in network design, applied optimization, and design of algorithms.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Vital BabyŽ HYGIENE™ Super Soft Hand…
R45 Discovery Miles 450
Vibro Shape Belt
R800 Discovery Miles 8 000
Aerolatte Cappuccino Art Stencils (Set…
R110 R95 Discovery Miles 950
Bosch GBM 320 Professional Drill…
R799 R449 Discovery Miles 4 490
Bostik Clear (50ml)
R57 Discovery Miles 570
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Cadac Pizza Stone (33cm)
 (18)
R398 Discovery Miles 3 980
Playstation 4 Replacement Case
 (9)
R54 Discovery Miles 540
Hampstead
Diane Keaton, Brendan Gleeson, … DVD R63 Discovery Miles 630
Fidget Toy Creation Lab
Kit R199 R95 Discovery Miles 950

 

Partners