Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
In recent years, the discovery of new algorithms for dealing with polynomial equations, coupled with their implementation on fast inexpensive computers, has sparked a minor revolution in the study and practice of algebraic geometry. These algorithmic methods have also given rise to some exciting new applications of algebraic geometry. This book illustrates the many uses of algebraic geometry, highlighting some of the more recent applications of Grobner bases and resultants. In order to do this, the authors provide an introduction to some algebraic objects and techniques which are more advanced than one typically encounters in a first course, but nonetheless of great utility. The book is written for nonspecialists and for readers with a diverse range of backgrounds. It assumes knowledge of the material covered in a standard undergraduate course in abstract algebra, and it would help to have some previous exposure to Grobner bases. The book does not assume the reader is familiar with more advanced concepts such as modules. For this new edition the authors added two new sections and a new chapter, updated the references and made numerous minor improvements throughout the text."
The discovery of new algorithms for dealing with polynomial equations, and their implementation on fast, inexpensive computers, has revolutionized algebraic geometry and led to exciting new applications in the field. This book details many uses of algebraic geometry and highlights recent applications of Grobner bases and resultants. This edition contains two new sections, a new chapter, updated references and many minor improvements throughout.
"O'Shea tells the fascinating story of this mathematical mystery and its solution by the eccentric Mr. Perelman."--"Wall Street Journal "In 1904, Henri Poincare, a giant among mathematicians who transformed the fledging area of topology into a powerful field essential to all mathematics and physics, posed the Poincare conjecture, a tantalizing puzzle that speaks to the possible shape of the universe. For more than a century, the conjecture resisted attempts to prove or disprove it. As Donal O'Shea reveals in his elegant narrative, Poincare's conjecture opens a door to the history of geometry, from the Pythagoreans of ancient Greece to the celebrated geniuses of the nineteenth-century German academy and, ultimately, to a fascinating array of personalities--Poincare and Bernhard Riemann, William Thurston and Richard Hamilton, and the eccentric genius who appears to have solved it, Grigory Perelman. The solution seems certain to open up new corners of the mathematical universe.
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry-the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz-this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Groebner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D). The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple (TM), Mathematica (R) and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used. Readers who are teaching from Ideals, Varieties, and Algorithms, or are studying the book on their own, may obtain a copy of the solutions manual by sending an email to [email protected]. From the reviews of previous editions: "...The book gives an introduction to Buchberger's algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. ...The book is well-written. ...The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry." -Peter Schenzel, zbMATH, 2007 "I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry." -The American Mathematical Monthly
|
You may like...
|