Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
The study of shape optimization problems encompasses a wide spectrum of academic research with numerous applications to the real world. In this work these problems are treated from both the classical and modern perspectives and target a broad audience of graduate students in pure and applied mathematics, as well as engineers requiring a solid mathematical basis for the solution of practical problems. Key topics and features: * Presents foundational introduction to shape optimization theory * Studies certain classical problems: the isoperimetric problem and the Newton problem involving the best aerodynamical shape, and optimization problems over classes of convex domains * Treats optimal control problems under a general scheme, giving a topological framework, a survey of "gamma"-convergence, and problems governed by ODE * Examines shape optimization problems with Dirichlet and Neumann conditions on the free boundary, along with the existence of classical solutions * Studies optimization problems for obstacles and eigenvalues of elliptic operators * Poses several open problems for further research * Substantial bibliography and index Driven by good examples and illustrations and requiring only a standard knowledge in the calculus of variations, differential equations, and functional analysis, the book can serve as a text for a graduate course in computational methods of optimal design and optimization, as well as an excellent reference for applied mathematicians addressing functional shape optimization problems.
The study of shape optimization problems is a very wide field, both classical, as the isoperimetric problem and Newton problem of the best aerodynamical shape show, and modern, for all the recent results obtained in the last two, three decades. The fascinating feature is that the competing objects are shapes, i.e. domains of Rn, instead of functions, as usually occurs in problems of calculus of variations. This constraint often produces additional difficulties that lead to a lack of existence of a solution and the introduction of suitable relaxed formulations of the problem. However, in a few cases an optimal solution exists, due to the special form of the cost functional and to the geometrical restriction on the class of competing domains. This volume collects the lecture notes of two courses given in the academic year 2000/01 by the authors at the University of Pisa and at the Scuola Normale Superiore respectively. The courses were mainly addressed to Ph. D. students and required a background in the topics in functional analysis that are usually taught in undergraduate courses.
|
You may like...
|