0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Quantum Field Theory I - Foundations and Abelian and Non-Abelian Gauge Theories (Hardcover, 1st ed. 2016): Edouard B. Manoukian Quantum Field Theory I - Foundations and Abelian and Non-Abelian Gauge Theories (Hardcover, 1st ed. 2016)
Edouard B. Manoukian
R2,603 Discovery Miles 26 030 Ships in 12 - 17 working days

This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman's well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Particular emphasis is placed on the concept of a quantum field and its particle content to provide an appropriate description of physical processes at high energies, where relativity becomes indispensable. Moreover, quantum mechanics implies that a wave function renormalization arises in the QFT field independent of any perturbation theory - a point not sufficiently emphasized in the literature. The book provides an overview of all the fields encountered in present high-energy physics, together with the details of the underlying derivations. Further, it presents "deep inelastic" experiments as a fundamental application of quantum chromodynamics. Though the author makes a point of deriving points in detail, the book still requires good background knowledge of quantum mechanics, including the Dirac Theory, as well as elements of the Klein-Gordon equation. The present volume sets the language, the notation and provides additional background for reading Quantum Field Theory II - Introduction to Quantum Gravity, Supersymmetry and String Theory, by the same author. Students in this field might benefit from first reading the book Quantum Theory: A Wide Spectrum (Springer, 2006), by the same author.

Quantum Field Theory II - Introductions to Quantum Gravity, Supersymmetry and String Theory (Hardcover, 1st ed. 2016): Edouard... Quantum Field Theory II - Introductions to Quantum Gravity, Supersymmetry and String Theory (Hardcover, 1st ed. 2016)
Edouard B. Manoukian
R3,049 Discovery Miles 30 490 Ships in 12 - 17 working days

This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as "loop quantum gravity", which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell's Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory.

Quantum Field Theory I - Foundations and Abelian and Non-Abelian Gauge Theories (Paperback, Softcover reprint of the original... Quantum Field Theory I - Foundations and Abelian and Non-Abelian Gauge Theories (Paperback, Softcover reprint of the original 1st ed. 2016)
Edouard B. Manoukian
R1,920 Discovery Miles 19 200 Ships in 10 - 15 working days

This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman's well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Particular emphasis is placed on the concept of a quantum field and its particle content to provide an appropriate description of physical processes at high energies, where relativity becomes indispensable. Moreover, quantum mechanics implies that a wave function renormalization arises in the QFT field independent of any perturbation theory - a point not sufficiently emphasized in the literature. The book provides an overview of all the fields encountered in present high-energy physics, together with the details of the underlying derivations. Further, it presents "deep inelastic" experiments as a fundamental application of quantum chromodynamics. Though the author makes a point of deriving points in detail, the book still requires good background knowledge of quantum mechanics, including the Dirac Theory, as well as elements of the Klein-Gordon equation. The present volume sets the language, the notation and provides additional background for reading Quantum Field Theory II - Introduction to Quantum Gravity, Supersymmetry and String Theory, by the same author. Students in this field might benefit from first reading the book Quantum Theory: A Wide Spectrum (Springer, 2006), by the same author.

Quantum Field Theory II - Introductions to Quantum Gravity, Supersymmetry and String Theory (Paperback, Softcover reprint of... Quantum Field Theory II - Introductions to Quantum Gravity, Supersymmetry and String Theory (Paperback, Softcover reprint of the original 1st ed. 2016)
Edouard B. Manoukian
R1,854 Discovery Miles 18 540 Ships in 10 - 15 working days

This book takes a pedagogical approach to explaining quantum gravity, supersymmetry and string theory in a coherent way. It is aimed at graduate students and researchers in quantum field theory and high-energy physics. The first part of the book introduces quantum gravity, without requiring previous knowledge of general relativity (GR). The necessary geometrical aspects are derived afresh leading to explicit general Lagrangians for gravity, including that of general relativity. The quantum aspect of gravitation, as described by the graviton, is introduced and perturbative quantum GR is discussed. The Schwinger-DeWitt formalism is developed to compute the one-loop contribution to the theory and renormalizability aspects of the perturbative theory are also discussed. This follows by introducing only the very basics of a non-perturbative, background-independent, formulation of quantum gravity, referred to as "loop quantum gravity", which gives rise to a quantization of space. In the second part the author introduces supersymmetry and its consequences. The generation of superfields is represented in detail. Supersymmetric generalizations of Maxwell's Theory as well as of Yang-Mills field theory, and of the standard model are worked out. Spontaneous symmetry breaking, improvement of the divergence problem in supersymmetric field theory, and its role in the hierarchy problem are covered. The unification of the fundamental constants in a supersymmetric version of the standard model are then studied. Geometrical aspects necessary to study supergravity are developed culminating in the derivation of its full action. The third part introduces string theory and the analysis of the spectra of the mass (squared) operator associated with the oscillating strings. The properties of the underlying fields, associated with massless particles, encountered in string theory are studied in some detail. Elements of compactification, duality and D-branes are given, as well of the generation of vertices and interactions of strings. In the final sections, the author shows how to recover GR and the Yang-Mills field Theory from string theory.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Lanvin Jeanne Lanvin Eau De Parfum Spray…
R1,552 R650 Discovery Miles 6 500
Multi Colour Jungle Stripe Neckerchief
R119 Discovery Miles 1 190
Maze Runner: Chapter II - The Scorch…
Thomas Brodie-Sangster, Nathalie Emmanuel, … Blu-ray disc R32 Discovery Miles 320
Faber-Castell 12 Hex. EcoPencils Plus 3…
R76 Discovery Miles 760
Mellerware Swiss - Plastic Floor Fan…
 (1)
R348 Discovery Miles 3 480
LK's Enamel Bake Pot No 12 (5L) (Blue)
R1,899 R1,259 Discovery Miles 12 590
Sharp EL-W506T Scientific Calculator…
R599 R560 Discovery Miles 5 600
Endless Summer Vacation
Miley Cyrus CD R246 R207 Discovery Miles 2 070
I Used To Know That: Maths
Chris Waring Paperback R200 R89 Discovery Miles 890
Moonage Daydream
David Bowie Blu-ray disc R193 Discovery Miles 1 930

 

Partners