![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
This volume presents some of the most influential papers published by Rabi N. Bhattacharya, along with commentaries from international experts, demonstrating his knowledge, insight, and influence in the field of probability and its applications. For more than three decades, Bhattacharya has made significant contributions in areas ranging from theoretical statistics via analytical probability theory, Markov processes, and random dynamics to applied topics in statistics, economics, and geophysics. Selected reprints of Bhattacharya's papers are divided into three sections: Modes of Approximation, Large Times for Markov Processes, and Stochastic Foundations in Applied Sciences. The accompanying articles by the contributing authors not only help to position his work in the context of other achievements, but also provide a unique assessment of the state of their individual fields, both historically and for the next generation of researchers. Rabi N. Bhattacharya: Selected Papers will be a valuable resource for young researchers entering the diverse areas of study to which Bhattacharya has contributed. Established researchers will also appreciate this work as an account of both past and present developments and challenges for the future.
The IMA Summer Program on Probability and Partial Differential Equations in Modern Applied Mathematics took place July 21-August 1, 2003. The program was devoted to the role of probabilistic methods in modern applied mathematics from perspectives of both a tool for analysis and as a tool in modeling. There is a growing recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in analysis, as well as offer new perspectives on the phenomena for modeling purposes. In addition, such approaches can be effective in sorting out multiple scale structure and in the development of both non-Monte Carlo as well as Monte Carlo type numerical methods. There is also a growing recognition of a role in the inclusion of stochastic terms in the modeling of complex flows, and the addition of such terms has led to interesting new mathematical problems at the interface of probability, dynamical systems, numerical analysis, and partial differential equations. This volume consists of original contributions by researchers with a common interest in the problems, but with diverse mathematical expertise and perspective. The volume will be useful to researchers and graduate students who are interested in probabilistic methods, dynamical systems approaches and numerical analysis for mathematical modeling in engineering and sciences.
This volume presents some of the most influential papers published by Rabi N. Bhattacharya, along with commentaries from international experts, demonstrating his knowledge, insight, and influence in the field of probability and its applications. For more than three decades, Bhattacharya has made significant contributions in areas ranging from theoretical statistics via analytical probability theory, Markov processes, and random dynamics to applied topics in statistics, economics, and geophysics. Selected reprints of Bhattacharya's papers are divided into three sections: Modes of Approximation, Large Times for Markov Processes, and Stochastic Foundations in Applied Sciences. The accompanying articles by the contributing authors not only help to position his work in the context of other achievements, but also provide a unique assessment of the state of their individual fields, both historically and for the next generation of researchers. Rabi N. Bhattacharya: Selected Papers will be a valuable resource for young researchers entering the diverse areas of study to which Bhattacharya has contributed. Established researchers will also appreciate this work as an account of both past and present developments and challenges for the future.
"Probability and Partial Differential Equations in Modern Applied Mathematics" is devoted to the role of probabilistic methods in modern applied mathematics from the perspectives of both a tool for analysis and as a tool in modeling. There is a recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in the analysis of deterministic problems, as well as to offer new perspectives on the phenomena for modeling purposes. There is also a growing appreciation of the role for the inclusion of stochastic effects in the modeling of complex systems. This has led to interesting new mathematical problems at the interface of probability, dynamical systems, numerical analysis, and partial differential equations. This volume will be useful to researchers and graduate students interested in probabilistic methods, dynamical systems approaches and numerical analysis for mathematical modeling in the sciences and engineering.
This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. It features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walk in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. Most results are presented with complete proofs, while some very technical matters are relegated to a Theoretical Complements section at the end of each chapter in order not to impede the flow of the material. Chapter Applications, as well as numerous extensively worked examples, illustrate important applications of the subject to various fields of science, engineering, economics, and applied mathematics. The essentials of measure theoretic probability are included in an appendix to complete some of the more technical aspects of the text.
This textbook explores two distinct stochastic processes that evolve at random: weakly stationary processes and discrete parameter Markov processes. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. After recapping the essentials from Fourier analysis, the book begins with an introduction to the spectral representation of a stationary process. Topics in ergodic theory follow, including Birkhoff's Ergodic Theorem and an introduction to dynamical systems. From here, the Markov property is assumed and the theory of discrete parameter Markov processes is explored on a general state space. Chapters cover a variety of topics, including birth-death chains, hitting probabilities and absorption, the representation of Markov processes as iterates of random maps, and large deviation theory for Markov processes. A chapter on geometric rates of convergence to equilibrium includes a splitting condition that captures the recurrence structure of certain iterated maps in a novel way. A selection of special topics concludes the book, including applications of large deviation theory, the FKG inequalities, coupling methods, and the Kalman filter. Featuring many short chapters and a modular design, this textbook offers an in-depth study of stationary and discrete-time Markov processes. Students and instructors alike will appreciate the accessible, example-driven approach and engaging exercises throughout. A single, graduate-level course in probability is assumed.
This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov-Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
|
![]() ![]() You may like...
Register of the Commissioned, Warrant…
United States Bureau of Naval Personnel
Paperback
Start by Believing - Larry Nassar's…
Dan Murphy, John Barr
Hardcover
Divide and Conquer Book 2 - Advanced…
Francois Lemaire de Ruffieu
Hardcover
R1,046
Discovery Miles 10 460
|