Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.
This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applications of numerical methods in information retrieval and data mining; discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems; presents outstanding challenges and developing technologies, and puts these in their historical context.
Enabling Technologies for Computational Science assesses future application computing needs, identifies research directions in problem-solving environments (PSEs), addresses multi-disciplinary environments operating on the Web, proposes methodologies and software architectures for building adaptive and human-centered PSEs, and describes the role of symbolic computing in scientific and engineering PSEs. The book also includes an extensive bibliography of over 400 references. Enabling Technologies for Computational Science illustrates the extremely broad and interdisciplinary nature of the creation and application of PSEs. Authors represent academia, government laboratories and industry, and come from eight distinct disciplines (chemical engineering, computer science, ecology, electrical engineering, mathematics, mechanical engineering, psychology and wood sciences). This breadth and diversity extends into the computer science aspects of PSEs. These papers deal with topics such as artificial intelligence, computer-human interaction, control, data mining, graphics, language design and implementation, networking, numerical analysis, performance evaluation, and symbolic computing. Enabling Technologies for Computational Science provides an assessment of the state of the art and a road map to the future in the area of problem-solving environments for scientific computing. This book is suitable as a reference for scientists from a variety of disciplines interested in using PSEs for their research.
This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of parallel iterative linear system solvers with emphasis on scalable preconditioners, (b) parallel schemes for obtaining a few of the extreme eigenpairs or those contained in a given interval in the spectrum of a standard or generalized symmetric eigenvalue problem, and (c) parallel methods for computing a few of the extreme singular triplets. Part IV focuses on the development of parallel algorithms for matrix functions and special characteristics such as the matrix pseudospectrum and the determinant. The book also reviews the theoretical and practical background necessary when designing these algorithms and includes an extensive bibliography that will be useful to researchers and students alike. The book brings together many existing algorithms for the fundamental matrix computations that have a proven track record of efficient implementation in terms of data locality and data transfer on state-of-the-art systems, as well as several algorithms that are presented for the first time, focusing on the opportunities for parallelism and algorithm robustness.
This book presents the state of the art in parallel numerical algorithms, applications, architectures, and system software. The book examines various solutions for issues of concurrency, scale, energy efficiency, and programmability, which are discussed in the context of a diverse range of applications. Features: includes contributions from an international selection of world-class authorities; examines parallel algorithm-architecture interaction through issues of computational capacity-based codesign and automatic restructuring of programs using compilation techniques; reviews emerging applications of numerical methods in information retrieval and data mining; discusses the latest issues in dense and sparse matrix computations for modern high-performance systems, multicores, manycores and GPUs, and several perspectives on the Spike family of algorithms for solving linear systems; presents outstanding challenges and developing technologies, and puts these in their historical context.
Enabling Technologies for Computational Science assesses future application computing needs, identifies research directions in problem-solving environments (PSEs), addresses multi-disciplinary environments operating on the Web, proposes methodologies and software architectures for building adaptive and human-centered PSEs, and describes the role of symbolic computing in scientific and engineering PSEs. The book also includes an extensive bibliography of over 400 references. Enabling Technologies for Computational Science illustrates the extremely broad and interdisciplinary nature of the creation and application of PSEs. Authors represent academia, government laboratories and industry, and come from eight distinct disciplines (chemical engineering, computer science, ecology, electrical engineering, mathematics, mechanical engineering, psychology and wood sciences). This breadth and diversity extends into the computer science aspects of PSEs. These papers deal with topics such as artificial intelligence, computer-human interaction, control, data mining, graphics, language design and implementation, networking, numerical analysis, performance evaluation, and symbolic computing. Enabling Technologies for Computational Science provides an assessment of the state of the art and a road map to the future in the area of problem-solving environments for scientific computing. This book is suitable as a reference for scientists from a variety of disciplines interested in using PSEs for their research.
|
You may like...
|