![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
Often people have wondered why there is no introductory text on category theory aimed at philosophers working in related areas. The answer is simple: what makes categories interesting and significant is their specific use for specific purposes. These uses and purposes, however, vary over many areas, both "pure", e.g., mathematical, foundational and logical, and "applied", e.g., applied to physics, biology and the nature and structure of mathematical models. Borrowing from the title of Saunders Mac Lane's seminal work "Categories for the Working Mathematician", this book aims to bring the concepts of category theory to philosophers working in areas ranging from mathematics to proof theory to computer science to ontology, from to physics to biology to cognition, from mathematical modeling to the structure of scientific theories to the structure of the world. Moreover, it aims to do this in a way that is accessible to non-specialists. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, and in a way that builds on the concepts that are already familiar to philosophers working in these areas.
This volume contains thirteen papers that were presented at the 2014 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/La Societe Canadienne d'Histoire et de Philosophie des Mathematiques, held on the campus of Brock University in St. Catharines, Ontario, Canada. It contains rigorously reviewed modern scholarship on general topics in the history and philosophy of mathematics, as well as on the meeting's special topic, Early Scientific Computation. These papers cover subjects such as *Physical tools used by mathematicians in the seventeenth century *The first historical appearance of the game-theoretical concept of mixed-strategy equilibrium *George Washington's mathematical cyphering books *The development of the Venn diagram *The role of Euler and other mathematicians in the development of algebraic analysis *Arthur Cayley and Alfred Kempe's influence on Charles Peirce's diagrammatic logic *The influence publishers had on the development of mathematical pedagogy in the nineteenth century *A description of the 1924 International Mathematical Congress held in Toronto, told in the form of a "narrated slide show" Written by leading scholars in the field, these papers will be accessible to not only mathematicians and students of the history and philosophy of mathematics, but also anyone with a general interest in mathematics.
This volume contains seventeen papers that were presented at the 2015 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/La Societe Canadienne d'Histoire et de Philosophie des Mathematiques, held in Washington, D.C. In addition to showcasing rigorously reviewed modern scholarship on an interesting variety of general topics in the history and philosophy of mathematics, this meeting also honored the memories of Jacqueline (Jackie) Stedall and Ivor Grattan-Guinness; celebrated the Centennial of the Mathematical Association of America; and considered the importance of mathematical communities in a special session. These themes and many others are explored in these collected papers, which cover subjects such as New evidence that the Latin translation of Euclid's Elements was based on the Arabic version attributed to al-Hajjaj Work done on the arc rampant in the seventeenth century The history of numerical methods for finding roots of nonlinear equations An original play featuring a dialogue between George Boole and Augustus De Morgan that explores the relationship between them Key issues in the digital preservation of mathematical material for future generations A look at the first twenty-five years of The American Mathematical Monthly in the context of the evolving American mathematical community The growth of Math Circles and the unique ways they are being implemented in the United States Written by leading scholars in the field, these papers will be accessible to not only mathematicians and students of the history and philosophy of mathematics, but also anyone with a general interest in mathematics.
Structural realism has rapidly gained in popularity in recent years, but it has splintered into many distinct denominations, often underpinned by diverse motivations. There is, no monolithic position known as 'structural realism, ' but there is a general convergence on the idea that a central role is to be played by relational aspects over object-based aspects of ontology. What becomes of causality in a world without fundamental objects? In this book, the foremost authorities on structural realism attempt to answer this and related questions: 'what is structure?' and 'what is an object?' Also featured are the most recent advances in structural realism, including the intersection of mathematical structuralism and structural realism, and the latest treatments of laws and modality in the context of structural realism. The book will be of interest to philosophers of science, philosophers of physics, metaphysicians, and those interested in foundational aspects of science.
This Element shows that Plato keeps a clear distinction between mathematical and metaphysical realism and the knife he uses to slice the difference is method. The philosopher's dialectical method requires that we tether the truth of hypotheses to existing metaphysical objects. The mathematician's hypothetical method, by contrast, takes hypotheses as if they were first principles, so no metaphysical account of their truth is needed. Thus, we come to Plato's methodological as-if realism: in mathematics, we treat our hypotheses as if they were first principles, and, consequently, our objects as if they existed, and we do this for the purpose of solving problems. Taking the road suggested by Plato's Republic, this Element shows that methodological commitments to mathematical objects are made in light of mathematical practice; foundational considerations; and, mathematical applicability. This title is also available as Open Access on Cambridge Core.
Structural realism has rapidly gained in popularity in recent years, but it has splintered into many distinct denominations, often underpinned by diverse motivations. There is, no monolithic position known as 'structural realism,' but there is a general convergence on the idea that a central role is to be played by relational aspects over object-based aspects of ontology. What becomes of causality in a world without fundamental objects? In this book, the foremost authorities on structural realism attempt to answer this and related questions: 'what is structure?' and 'what is an object?' Also featured are the most recent advances in structural realism, including the intersection of mathematical structuralism and structural realism, and the latest treatments of laws and modality in the context of structural realism. The book will be of interest to philosophers of science, philosophers of physics, metaphysicians, and those interested in foundational aspects of science.
|
![]() ![]() You may like...
The President's Keepers - Those Keeping…
Jacques Pauw
Paperback
![]()
Global War, Global Catastrophe…
Maartje Abbenhuis, Ismee Tames
Hardcover
R2,747
Discovery Miles 27 470
|