![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This open access book provides a unique and state-of-the-art view on DNA nanotechnology with an eye toward future developments. Intended as a tribute to Nadrian C. Seeman, who founded the field of DNA nanotechnology, the content is an exciting mixture of technical and non-technical material, reviews, tutorials, perspectives, new findings, and open questions. The book aims to inspire current researchers to sit back and think about the big picture, while also enticing new researchers to enter the field. Most of all, the book captures voices from a unique moment in time: 40 years after the publication of the first paper that envisioned DNA nanotechnology. From this vantage point, what are the untold stories, the unspoken concerns, the underlying fundamental issues, the overlooked opportunities, and the unifying grand challenges? What will help us see more clearly, see more creatively, or see farther? What is transpiring right now that could pave the way for the future? To address these questions, leading researchers have contributed 22 chapters, grouped into five sections: perspectives, chemistry and physics, structures, biochemical circuits, and spatial systems. This book will be an important reference point in the field of DNA nanotechnology, both for established researchers looking to take stock of the field and its future, and for newcomers such as graduate students and researchers in other fields who are beginning to appreciate the power and applicability of its methods.
A fundamental understanding of algorithmic bioprocesses is key to learning how information processing occurs in nature at the cell level. The field is concerned with the interactions between computer science on the one hand and biology, chemistry, and DNA-oriented nanoscience on the other. In particular, this book offers a comprehensive overview of research into algorithmic self-assembly, RNA folding, the algorithmic foundations for biochemical reactions, and the algorithmic nature of developmental processes. The editors of the book invited 36 chapters, written by the leading researchers in this area, and their contributions include detailed tutorials on the main topics, surveys of the state of the art in research, experimental results, and discussions of specific research goals. The main subjects addressed are sequence discovery, generation, and analysis; nanoconstructions and self-assembly; membrane computing; formal models and analysis; process calculi and automata; biochemical reactions; and other topics from natural computing, including molecular evolution, regulation of gene expression, light-based computing, cellular automata, realistic modelling of biological systems, and evolutionary computing. This subject is inherently interdisciplinary, and this book will be of value to researchers in computer science and biology who study the impact of the exciting mutual interaction between our understanding of bioprocesses and our understanding of computation.
The study of the genetic basis for evolution has flourished in this century, as well as our understanding of the evolvability and programmability of biological systems. Genetic algorithms meanwhile grew out of the realization that a computer program could use the biologically-inspired processes of mutation, recombination, and selection to solve hard optimization problems. Genetic and evolutionary programming provide further approaches to a wide variety of computational problems. A synthesis of these experiences reveals fundamental insights into both the computational nature of biological evolution and processes of importance to computer science. Topics include biological models of nucleic acid information processing and genome evolution; molecules, cells, and metabolic circuits that compute logical relationships; the origin and evolution of the genetic code; and the interface with genetic algorithms and genetic and evolutionary programming.
This open access book provides a unique and state-of-the-art view on DNA nanotechnology with an eye toward future developments. Intended as a tribute to Nadrian C. Seeman, who founded the field of DNA nanotechnology, the content is an exciting mixture of technical and non-technical material, reviews, tutorials, perspectives, new findings, and open questions. The book aims to inspire current researchers to sit back and think about the big picture, while also enticing new researchers to enter the field. Most of all, the book captures voices from a unique moment in time: 40 years after the publication of the first paper that envisioned DNA nanotechnology. From this vantage point, what are the untold stories, the unspoken concerns, the underlying fundamental issues, the overlooked opportunities, and the unifying grand challenges? What will help us see more clearly, see more creatively, or see farther? What is transpiring right now that could pave the way for the future? To address these questions, leading researchers have contributed 22 chapters, grouped into five sections: perspectives, chemistry and physics, structures, biochemical circuits, and spatial systems. This book will be an important reference point in the field of DNA nanotechnology, both for established researchers looking to take stock of the field and its future, and for newcomers such as graduate students and researchers in other fields who are beginning to appreciate the power and applicability of its methods.
The study of the genetic basis for evolution has flourished in this century, as well as our understanding of the evolvability and programmability of biological systems. Genetic algorithms meanwhile grew out of the realization that a computer program could use the biologically-inspired processes of mutation, recombination, and selection to solve hard optimization problems. Genetic and evolutionary programming provide further approaches to a wide variety of computational problems. A synthesis of these experiences reveals fundamental insights into both the computational nature of biological evolution and processes of importance to computer science. Topics include biological models of nucleic acid information processing and genome evolution; molecules, cells, and metabolic circuits that compute logical relationships; the origin and evolution of the genetic code; and the interface with genetic algorithms and genetic and evolutionary programming.
A fundamental understanding of algorithmic bioprocesses is key to learning how information processing occurs in nature at the cell level. The field is concerned with the interactions between computer science on the one hand and biology, chemistry, and DNA-oriented nanoscience on the other. In particular, this book offers a comprehensive overview of research into algorithmic self-assembly, RNA folding, the algorithmic foundations for biochemical reactions, and the algorithmic nature of developmental processes. The editors of the book invited 36 chapters, written by the leading researchers in this area, and their contributions include detailed tutorials on the main topics, surveys of the state of the art in research, experimental results, and discussions of specific research goals. The main subjects addressed are sequence discovery, generation, and analysis; nanoconstructions and self-assembly; membrane computing; formal models and analysis; process calculi and automata; biochemical reactions; and other topics from natural computing, including molecular evolution, regulation of gene expression, light-based computing, cellular automata, realistic modelling of biological systems, and evolutionary computing. This subject is inherently interdisciplinary, and this book will be of value to researchers in computer science and biology who study the impact of the exciting mutual interaction between our understanding of bioprocesses and our understanding of computation.
|
![]() ![]() You may like...
Phylogeography and Population Genetics…
Christoph Held, Stefan Koenemann, …
Paperback
R1,366
Discovery Miles 13 660
User Interface Requirements for Medical…
Michael Wiklund, Erin Davis, …
Hardcover
R5,787
Discovery Miles 57 870
Multimedia Cloud Computing Systems
Mohsen Amini Salehi, Xiangbo Li
Hardcover
R4,318
Discovery Miles 43 180
The 2nd Language of Leadership
Michael P. Quirk, Patricia M. Fandt
Hardcover
R4,555
Discovery Miles 45 550
|