![]() |
![]() |
Your cart is empty |
||
Showing 1 - 12 of 12 matches in All Departments
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory from Newton, Leibniz, Euler, and Hamilton to limit cycles and strange attractors. In a second chapter a modern treatment of Runge-Kutta and extrapolation methods is given. Also included are continuous methods for dense output, parallel Runge-Kutta methods, special methods for Hamiltonian systems, second order differential equations and delay equations. The third chapter begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. Many applications from physics, chemistry, biology, and astronomy together with computer programs and numerical comparisons are presented. This new edition has been rewritten, errors have been eliminated and new material has been included. The book will be immensely useful to graduate students and researchers in numerical analysis and scientific computing, and to scientists in the fields mentioned above.
Numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions are the subject of this book. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by many figures, it treats applications from physics and astronomy and contains many numerical experiments and comparisons of different approaches. The second edition is substantially revised and enlarged, with many improvements in the presentation and additions concerning in particular non-canonical Hamiltonian systems, highly oscillatory mechanical systems, and the dynamics of multistep methods.
The subject of this book is the solution of stiff differential equations and of differential-algebraic systems (differential equations with constraints). The book is divided into four chapters. The beginning of each chapter is of introductory nature, followed by practical applications, the discussion of numerical results, theoretical investigations on the order and accuracy, linear and nonlinear stability, convergence and asymptotic expansions. Stiff and differential-algebraic problems arise everywhere in scientific computations (e.g., in physics, chemistry, biology, control engineering, electrical network analysis, mechanical systems). Many applications as well as computer programs are presented.
First-year calculus presented roughly in the order in which it first was discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations, while the establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, and researchers alike.
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.
This book presents first-year calculus roughly in the order in which it was first discovered. The first two chapters show how the ancient calculations of practical problems led to infinite series, differential and integral calculus and to differential equations. The establishment of mathematical rigour for these subjects in the 19th century for one and several variables is treated in chapters III and IV. Many quotations are included to give the flavor of the history. The text is complemented by a large number of examples, calculations and mathematical pictures and will provide stimulating and enjoyable reading for students, teachers, as well as researchers.
The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.
This volume addresses some of the research areas in the general
field of stability studies for differential equations, with
emphasis on issues of concern for numerical studies.
This book covers numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. It presents a theory of symplectic and symmetric methods, which include various specially designed integrators, as well as discusses their construction and practical merits. The long-time behavior of the numerical solutions is studied using a backward error analysis combined with KAM theory.
The subject of this book is the solution of stiff differential equations and of differential-algebraic systems. This second edition contains new material including new numerical tests, recent progress in numerical differential-algebraic equations, and improved FORTRAN codes. From the reviews: "A superb book...Throughout, illuminating graphics, sketches and quotes from papers of researchers in the field add an element of easy informality and motivate the text." --MATHEMATICS TODAY
Diese Einfuhrung in die Analysis orientiert sich an der historischen Entwicklung: Die ersten zwei Kapitel schlagen den Bogen von historischen Berechnungsmethoden zu unendlichen Reihen, zur Differential- und Integralrechnung und zu Differentialgleichungen. Die Etablierung einer mathematisch stringenten Denkhaltung im 19. Jahrhundert fur ein und mehrere Variablen ist Thema der darauffolgenden Kapitel. Viele Beispiele, Berechnungen und Bilder machen den Band zu einem Lesevergnugen fur Studierende, fur Lehrer und fur Wissenschaftler.
The first book to approach high oscillation as a subject of its own, Highly Oscillatory Problems begins a new dialogue and lays the groundwork for future research. It ensues from the six-month programme held at the Newton Institute of Mathematical Sciences, which was the first time that different specialists in highly oscillatory research, from diverse areas of mathematics and applications, had been brought together for a single intellectual agenda. This ground-breaking volume consists of eight review papers by leading experts in subject areas of active research, with an emphasis on computation: numerical Hamiltonian problems, highly oscillatory quadrature, rapid approximation of functions, high frequency wave propagation, numerical homogenization, discretization of the wave equation, high frequency scattering and the solution of elliptic boundary value problems.
|
![]() ![]() You may like...
|