![]() |
![]() |
Your cart is empty |
||
Showing 1 - 7 of 7 matches in All Departments
Stochastic Process Optimization using Aspen (R) Plus Bookshop Category: Chemical Engineering Optimization can be simply defined as "choosing the best alternative among a set of feasible options". In all the engineering areas, optimization has a wide range of applications, due to the high number of decisions involved in an engineering environment. Chemical engineering, and particularly process engineering, is not an exception; thus stochastic methods are a good option to solve optimization problems for the complex process engineering models. In this book, the combined use of the modular simulator Aspen (R) Plus and stochastic optimization methods, codified in MATLAB, is presented. Some basic concepts of optimization are first presented, then, strategies to use the simulator linked with the optimization algorithm are shown. Finally, examples of application for process engineering are discussed. The reader will learn how to link the process simulator Aspen (R) Plus and stochastic optimization algorithms to solve process design problems. They will gain ability to perform multi-objective optimization in several case studies. Key Features: * The book links simulation and optimization through numerical analyses and stochastic optimization techniques * Includes use of examples to illustrate the application of the concepts and specific guidance on the use of software (Aspen (R) Plus, Excel, MATLB) to set up and solve models representing complex problems. * Illustrates several examples of applications for the linking of simulation and optimization software with other packages for optimization purposes. * Provides specific information on how to implement stochastic optimization with process simulators. * Enable readers to identify practical and economic solutions to problems of industrial relevance, enhancing the safety, operation, environmental, and economic performance of chemical processes.
Stochastic Process Optimization using Aspen (R) Plus Bookshop Category: Chemical Engineering Optimization can be simply defined as "choosing the best alternative among a set of feasible options". In all the engineering areas, optimization has a wide range of applications, due to the high number of decisions involved in an engineering environment. Chemical engineering, and particularly process engineering, is not an exception; thus stochastic methods are a good option to solve optimization problems for the complex process engineering models. In this book, the combined use of the modular simulator Aspen (R) Plus and stochastic optimization methods, codified in MATLAB, is presented. Some basic concepts of optimization are first presented, then, strategies to use the simulator linked with the optimization algorithm are shown. Finally, examples of application for process engineering are discussed. The reader will learn how to link the process simulator Aspen (R) Plus and stochastic optimization algorithms to solve process design problems. They will gain ability to perform multi-objective optimization in several case studies. Key Features: * The book links simulation and optimization through numerical analyses and stochastic optimization techniques * Includes use of examples to illustrate the application of the concepts and specific guidance on the use of software (Aspen (R) Plus, Excel, MATLB) to set up and solve models representing complex problems. * Illustrates several examples of applications for the linking of simulation and optimization software with other packages for optimization purposes. * Provides specific information on how to implement stochastic optimization with process simulators. * Enable readers to identify practical and economic solutions to problems of industrial relevance, enhancing the safety, operation, environmental, and economic performance of chemical processes.
Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the "greening" of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.
Process synthesis and process intensification are becoming state-of-the-art scientific fields that provide the methods and tools to improve process technologies in terms of high energy efficiency, low capital investment, low emissions, improved safety, and less hazardous byproducts to achieve sustainable products and processes. The book covers manufacturing processes from both fossil- and biomass-based feedstocks for graduate students.
Biofuels and Biorefining: Volume One: Current Technologies for Biomass Conversion considers the conventional processes for biofuels and biomass-derived products in single and biorefinery schemes. Sections address the fundamentals of the transformation of biomass into fuels and products, including a discussion of current and future scenarios, potential raw materials that can be used, the main processing technologies and their commercial potential, and a description of the concept of biorefinery and the opportunities offered by this approach. Each chapter is supported by industry case studies covering the development of each product, fuel type, and biorefinery. This book provides an integrated approach to biofuels production and process intensification that will be useful to researchers involved in all aspects of bioenergy, particularly those interested in cost reduction, environmental impact and enhanced production.
Biofuels and Biorefining: Volume Two: Intensified Processes and Biorefineries considers intensification and optimization processes for biofuels and biomass-derived products in single and biorefinery schemes. Chapters cover production processes for liquid biofuels, introducing all feasible intensification alternatives for each process, process intensification methods for the production of value-added products, the importance of detailed CFD-based studies, controllability studies, strategies for risk analysis in intensified processes, the concept of biorefinery for the co-production of biofuels/biomass derived value-added products, and the importance of process intensification in the biorefinery scheme. Final chapters discuss how to ensure the sustainability of the intensified process and minimize the societal impact of biorefineries through various strategies, including supply chain optimization and lifecycle analysis. Each chapter is supported by industry case studies that address key aspects and impacts of intensification and optimization processes.
Production Processes of Renewable Aviation Fuel: Present Technologies and Future Trends presents the available production processes for renewable aviation fuel, including the application of intensification and energy integration strategies. Despite biofuels have gained a lot of interest in the last years, renewable aviation fuel is one of the less studied. In the last ten years, there has been an incredible growth in the number of patents and articles related with its production processes. Several transformation pathways have been proposed, and new ones have been outlined. The book contains the main information about the production processes of renewable aviation fuel, considering international standards, available technologies, and recent scientific contributions. It also outlines the motivation for the development of renewable aviation fuel, and its main processing pathways from the different renewable raw materials. In addition, the application of intensification and energy integration strategies is presented, along with the identified future trends in this area
|
![]() ![]() You may like...
Our World Quiz Book - 300 Brain Busting…
National Geographic Kids
Paperback
R161
Discovery Miles 1 610
|