![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
The subject of this book is analysis on Wiener space by means of Dirichlet forms and Malliavin calculus. There are already several literature on this topic, but this book has some different viewpoints. First the authors review the theory of Dirichlet forms, but they observe only functional analytic, potential theoretical and algebraic properties. They do not mention the relation with Markov processes or stochastic calculus as discussed in usual books (e.g. Fukushima s book). Even on analytic properties, instead of mentioning the Beuring-Deny formula, they discuss carre du champ operators introduced by Meyer and Bakry very carefully. Although they discuss when this carre du champ operator exists in general situation, the conditions they gave are rather hard to verify, and so they verify them in the case of Ornstein-Uhlenbeck operator in Wiener space later. (It should be noticed that one can easily show the existence of carre du champ operator in this case by using Shigekawa s H-derivative.) In the part on Malliavin calculus, the authors mainly discuss the absolute continuity of the probability law of Wiener functionals. The Dirichlet form corresponds to the first derivative only, and so it is not easy to consider higher order derivatives in this framework. This is the reason why they discuss only the first step of Malliavin calculus. On the other hand, they succeeded to deal with some delicate problems (the absolute continuity of the probability law of the solution to stochastic differential equations with Lipschitz continuous coefficients, the domain of stochastic integrals (Ito-Ramer-Skorokhod integrals), etc.). This book focuses on the abstract structure of Dirichlet forms and Malliavin calculus rather than their applications. However, the authors give a lot of exercises and references and they may help the reader to study other topics which are not discussed in this book. Zentralblatt Math, Reviewer: S.Kusuoka (Hongo)"
We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings. They are developed in eight chapters, with about a hundred of exercises.
We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings. They are developed in eight chapters, with about a hundred of exercises.
|
![]() ![]() You may like...
The Reconstruction of Natural Zeolites…
Philippe Knauth, Habbib Ghobarkar, …
Hardcover
R2,584
Discovery Miles 25 840
Reading the Leaves - An Intuitive Guide…
Sandra Mariah Wright, Leanne Marrama
Paperback
Modern Aspects of Electrochemistry
John O'M. Bockris, Ralph E. White, …
Hardcover
R4,554
Discovery Miles 45 540
How is Global Dialogue Possible…
Johanna Seibt, Jesper Garsdal
Hardcover
R4,258
Discovery Miles 42 580
Intertwingled - The Work and Influence…
Douglas R. Dechow, Daniele C. Struppa
Hardcover
R1,644
Discovery Miles 16 440
|