![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
The central problem considered in this introduction for graduate students is the determination of rational parametrizability of an algebraic curve and, in the positive case, the computation of a good rational parametrization. This amounts to determining the genus of a curve: its complete singularity structure, computing regular points of the curve in small coordinate fields, and constructing linear systems of curves with prescribed intersection multiplicities. The book discusses various optimality criteria for rational parametrizations of algebraic curves.
This book constitutes the refereed proceedings of the 4th
International Conference on Algebraic Informatics, CAI 2011, held
in Linz, Austria, in June 2011.
The central problem considered in this introduction for graduate students is the determination of rational parametrizability of an algebraic curve and, in the positive case, the computation of a good rational parametrization. This amounts to determining the genus of a curve: its complete singularity structure, computing regular points of the curve in small coordinate fields, and constructing linear systems of curves with prescribed intersection multiplicities. The book discusses various optimality criteria for rational parametrizations of algebraic curves.
This book constitutes the thoroughly refereed post-proceedings of the 4th International Workshop on Automated Deduction in Geometry, ADG 2002, held at Hagenberg Castle, Austria in September 2002. The 13 revised full papers presented were carefully selected during two rounds of reviewing and improvement. Among the issues addressed are theoretical and methodological topics, such as the resolution of singularities, algebraic geometry and computer algebra; various geometric theorem proving systems are explored; and applications of automated deduction in geometry are demonstrated in fields like computer-aided design and robotics.
The thoroughly refereed post-proceedings of the Second International Conference on Symbolic and Numerical Scientific Computation, SNSC 2001, held in Hagenberg, Austria, in September 2001. The 19 revised full papers presented were carefully selected during two rounds of reviewing and improvement. The papers are organized in topical sections on symbolics and numerics of differential equations, symbolics and numerics in algebra and geometry, and applications in physics and engineering.
The theory of Gröbner bases, invented by Bruno Buchberger, is a general method by which many fundamental problems in various branches of mathematics and engineering can be solved by structurally simple algorithms. The method is now available in all major mathematical software systems. This book provides a short and easy-to-read account of the theory of Gröbner bases and its applications. It is in two parts, the first consisting of tutorial lectures, beginning with a general introduction. The subject is then developed in a further twelve tutorials, written by leading experts, on the application of Gröbner bases in various fields of mathematics. In the second part there are seventeen original research papers on Gröbner bases. An appendix contains the English translations of the original German papers of Bruno Buchberger in which Gröbner bases were introduced.
For several years now I have been teaching courses in computer algebra at the Universitat Linz, the University of Delaware, and the Universidad de Alcala de Henares. In the summers of 1990 and 1992 I have organized and taught summer schools in computer algebra at the Universitat Linz. Gradually a set of course notes has emerged from these activities. People have asked me for copies of the course notes, and different versions of them have been circulating for a few years. Finally I decided that I should really take the time to write the material up in a coherent way and make a book out of it. Here, now, is the result of this work. Over the years many students have been helpful in improving the quality of the notes, and also several colleagues at Linz and elsewhere have contributed to it. I want to thank them all for their effort, in particular I want to thank B. Buchberger, who taught me the theory of Grabner bases nearly two decades ago, B. F. Caviness and B. D. Saunders, who first stimulated my interest in various problems in computer algebra, G. E. Collins, who showed me how to compute in algebraic domains, and J. R. Sendra, with whom I started to apply computer algebra methods to problems in algebraic geometry. Several colleagues have suggested improvements in earlier versions of this book. However, I want to make it clear that I am responsible for all remaining mistakes.
|
![]() ![]() You may like...
|