![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This comprehensive reference summarizes the proceedings and keynote presentations from a recent conference held in Brussels, Belgium. Offering 1155 display equations, this volume contains original research and survey papers as well as contributions from world-renowned algebraists. It focuses on new results in classical Hopf algebras as well as the classification theory of finite dimensional Hopf algebras, categorical aspects of Hopf algebras, and recent advances in the theory of corings and quasi-Hopf algebras. It provides examples and basic properties of corings and their comodules in relation to ring and Hopf algebra theory and analyzes entwining structures and Morita theory for corings.
Intrinsically noncommutative spaces today are considered from the perspective of several branches of modern physics, including quantum gravity, string theory, and statistical physics. From this point of view, it is ideal to devise a concept of space and its geometry that is fundamentally noncommutative. Providing a clear introduction to noncommutative topology, Virtual Topology and Functor Geometry explores new aspects of these areas as well as more established facets of noncommutative algebra. Presenting the material in an easy, colloquial style to facilitate understanding, the book begins with an introduction to category theory, followed by a chapter on noncommutative spaces. This chapter examines noncommutative lattices, noncommutative opens, sheaf theory, the generalized Stone space, and Grothendieck topology. The author then studies Grothendieck categorical representations to formulate an abstract notion of "affine open." The final chapter proposes a dynamical version of topology and sheaf theory, providing at least one solution of the problem of sheafification independent of generalizations of topos theory. By presenting new ideas for the development of an intrinsically noncommutative geometry, this book fosters the further unification of different kinds of noncommutative geometry and the expression of observations that involve natural phenomena.
Intrinsically noncommutative spaces today are considered from the perspective of several branches of modern physics, including quantum gravity, string theory, and statistical physics. From this point of view, it is ideal to devise a concept of space and its geometry that is fundamentally noncommutative. Providing a clear introduction to noncommutative topology, Virtual Topology and Functor Geometry explores new aspects of these areas as well as more established facets of noncommutative algebra. Presenting the material in an easy, colloquial style to facilitate understanding, the book begins with an introduction to category theory, followed by a chapter on noncommutative spaces. This chapter examines noncommutative lattices, noncommutative opens, sheaf theory, the generalized Stone space, and Grothendieck topology. The author then studies Grothendieck categorical representations to formulate an abstract notion of "affine open". The final chapter proposes a dynamical version of topology and sheaf theory, providing at least one solution of the problem of sheafification independent of generalizations of topos theory. By presenting new ideas for the development of an intrinsically noncommutative geometry, this book fosters the further unification of different kinds of noncommutative geometry and the expression of observations that involve natural phenomena.
Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves. But the noncommutative equivalent is mainly applied to finite dimensional skewfields. Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture. This arithmetical nature is also present in the theory of maximal orders in central simple algebras. Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras. Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized algebras, the development of a theory of Hopf valuations on Hopf algebras and quantum groups, noncommutative valuations on the Weyl field and interesting rings of invariants and valuations of Gauss extensions.
|
![]() ![]() You may like...
Orbital Mechanics and Formation Flying…
Pedro A. Capo-Lugo, P.M. Bainum
Hardcover
R4,614
Discovery Miles 46 140
Handbook of Distributed Sensor Networks…
Marvin Heather
Hardcover
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Distributed and Parallel Systems - From…
Peter Kacsuk, Gabriele Kotsis
Hardcover
R5,718
Discovery Miles 57 180
Parallel Computing: Fundamentals…
E.H. D'Hollander, G.R. Joubert, …
Hardcover
R7,110
Discovery Miles 71 100
|