Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Basic mathematical techniques for partial differential equations (PDE) with applications to the life sciences form an integral part of the core curriculum for programs in mathematical biology. Yet, students in such a program with an undergraduate training in biology are typically deficient in any exposure to PDE. This volume starts with simple first order PDE and progresses through higher order equations and systems but with interesting applications, even at the level of a single first order PDE with constant coefficients.Similar to the two previous volumes by the author, another unique feature of the book is highlighting the scientific theme(s) of interest for the biological phenomena being modelled and analysed. In addition to temporal evolution of a biological phenomenon, its limiting equilibrium states and their stability, the possibility of locational variations leads to a study of additional themes such as (signal and wave) propagation, spatial patterning and robustness. The requirement that biological developments are relatively insensitive to sustained environmental changes provides an opportunity to examine the issue of feedback and robustness not encountered in the previous two volumes of this series.
Broadly speaking, there are two general approaches to teaching mathematical modeling: 1) the case study approach, and 2) the method based approach (that teaches mathematical techniques with applications to relevant mathematical models). This text emphasizes instead the scientific issues for modeling different phenomena. For the natural or harvested growth of a fish population, we may be interested in the evolution of the population, whether it reaches a steady state (equilibrium or cycle), stable or unstable with respect to a small perturbation from equilibrium, or whether a small change in the environment would cause a catastrophic change, etc. Each scientific issue requires an appropriate model and a different set of mathematical tools to extract information from the model. Models examined are chosen to help explain or justify empirical observations such as cocktail drug treatments are more effective and regenerations after injuries or illness are fast-tracked (compared to original developments).Volume I of this three-volume set limits its scope to phenomena and scientific issues that are modeled by ordinary differential equations (ODE). Scientific issues such as signal and wave propagation, diffusion, and shock formation involving spatial dynamics to be modeled by partial differential equations (PDE) will be treated in Vol. II. Scientific issues involving randomness and uncertainty are examined in Vol. III.
Broadly speaking, there are two general approaches to teaching mathematical modeling: 1) the case study approach, and 2) the method based approach (that teaches mathematical techniques with applications to relevant mathematical models). This text emphasizes instead the scientific issues for modeling different phenomena. For the natural or harvested growth of a fish population, we may be interested in the evolution of the population, whether it reaches a steady state (equilibrium or cycle), stable or unstable with respect to a small perturbation from equilibrium, or whether a small change in the environment would cause a catastrophic change, etc. Each scientific issue requires an appropriate model and a different set of mathematical tools to extract information from the model. Models examined are chosen to help explain or justify empirical observations such as cocktail drug treatments are more effective and regenerations after injuries or illness are fast-tracked (compared to original developments).Volume I of this three-volume set limits its scope to phenomena and scientific issues that are modeled by ordinary differential equations (ODE). Scientific issues such as signal and wave propagation, diffusion, and shock formation involving spatial dynamics to be modeled by partial differential equations (PDE) will be treated in Vol. II. Scientific issues involving randomness and uncertainty are examined in Vol. III.
'... the volume is impressively accessible. The result is a book that is valuable and approachable for biologists at all levels, including those interested in deepening their skills in mathematical modeling and those who seek an overview to aid them in communicating with collaborators in mathematics and statistics. The former group of readers may especially appreciate the first chapter, an introduction to key concepts in probability, and the set of ten assignments provided as an appendix.'CHOICEBiological processes are evolutionary in nature and often evolve in a noisy environment or in the presence of uncertainty. Such evolving phenomena are necessarily modeled mathematically by stochastic differential/difference equations (SDE), which have been recognized as essential for a true understanding of many biological phenomena. Yet, there is a dearth of teaching material in this area for interested students and researchers, notwithstanding the addition of some recent texts on stochastic modelling in the life sciences. The reason may well be the demanding mathematical pre-requisites needed to 'solve' SDE.A principal goal of this volume is to provide a working knowledge of SDE based on the premise that familiarity with the basic elements of a stochastic calculus for random processes is unavoidable. Through some SDE models of familiar biological phenomena, we show how stochastic methods developed for other areas of science and engineering are also useful in the life sciences. In the process, the volume introduces to biologists a collection of analytical and computational methods for research and applications in this emerging area of life science. The additions broaden the available tools for SDE models for biologists that have been limited by and large to stochastic simulations.
|
You may like...
|