0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Structured Electronic Design - Negative-feedback amplifiers (Hardcover, 2003 ed.): Chris J.M. Verhoeven, Arie van Staveren,... Structured Electronic Design - Negative-feedback amplifiers (Hardcover, 2003 ed.)
Chris J.M. Verhoeven, Arie van Staveren, G.L.E. Monna, M.H.L Kouwenhoven, E. Yildiz
R4,021 Discovery Miles 40 210 Ships in 12 - 17 working days

Analog design is one of the more difficult aspects of electrical engineering. The main reason is the apparently vague decisions an experienced designer makes in optimizing his circuit. To enable fresh designers, like students electrical engineering, to become acquainted with analog circuit design, structuring the analog design process is of utmost importance.
Structured Electronic Design: Negative-Feedback Amplifiers presents a design methodology for negative-feedback amplifiers. The design methodology enables to synthesize a topology and to, at the same time, optimize the performance of that topology.
Key issues in the design methodology are orthogonalization, hierarchy and simple models. Orthogonalization enables the separate optimization of the three fundamental quality aspects: noise, distortion and bandwidth. Hierarchy ensures that the right decisions are made at the correct level of abstraction. The use of simple models, results in simple calculations yielding maximum-performance indicators that can be used to reject wrong circuits relatively fast.
The presented design methodology divides the design of negative-feedback amplifiers in six independent steps. In the first two steps, the feedback network is designed. During those design steps, the active part is assumed to be a nullor, i.e. the performance with respect to noise, distortion and bandwidth is still ideal.
In the subsequent four steps, an implementation for the active part is synthesized. During those four steps the topology of the active part is synthesized such that optimum performance is obtained. Firstly, the input stage is designed with respect to noise performance. Secondly, the output stage isdesigned with respect to clipping distortion. Thirdly, the bandwidth performance is designed, which may require the addition of an additional amplifying stage. Finally, the biasing circuitry for biasing the amplifying stages is designed.
By dividing the design in independent design steps, the total global optimization is reduced to several local optimizations. By the specific sequence of the design steps, it is assured that the local optimizations yield a circuit that is close to the global optimum. On top of that, because of the separate dedicated optimizations, the resource use, like power, is tracked clearly.
Structured Electronic Design: Negative-Feedback Amplifiers presents in two chapters the background and an overview of the design methodology. Whereafter, in six chapters the separate design steps are treated with great detail. Each chapter comprises several exercises. An additional chapter is dedicated to how to design current sources and voltage source, which are required for the biasing. The final chapter in the book is dedicated to a thoroughly described design example, showing clearly the benefits of the design methodology.
In short, this book is valuable for M.Sc.-curriculum Electrical Engineering students, and of course, for researchers and designers who want to structure their knowledge about analog design further.

Structured Electronic Design - Negative-feedback amplifiers (Paperback, Softcover reprint of hardcover 1st ed. 2003): Chris... Structured Electronic Design - Negative-feedback amplifiers (Paperback, Softcover reprint of hardcover 1st ed. 2003)
Chris J.M. Verhoeven, Arie van Staveren, G.L.E. Monna, M.H.L Kouwenhoven, E. Yildiz
R4,017 Discovery Miles 40 170 Ships in 10 - 15 working days

Analog design is one of the more difficult aspects of electrical engineering. The main reason is the apparently vague decisions an experienced designer makes in optimizing his circuit. To enable fresh designers, like students electrical engineering, to become acquainted with analog circuit design, structuring the analog design process is of utmost importance. Structured Electronic Design: Negative-Feedback Amplifiers presents a design methodology for negative-feedback amplifiers. The design methodology enables to synthesize a topology and to, at the same time, optimize the performance of that topology. Key issues in the design methodology are orthogonalization, hierarchy and simple models. Orthogonalization enables the separate optimization of the three fundamental quality aspects: noise, distortion and bandwidth. Hierarchy ensures that the right decisions are made at the correct level of abstraction. The use of simple models, results in simple calculations yielding maximum-performance indicators that can be used to reject wrong circuits relatively fast. The presented design methodology divides the design of negative-feedback amplifiers in six independent steps. In the first two steps, the feedback network is designed. During those design steps, the active part is assumed to be a nullor, i.e. the performance with respect to noise, distortion and bandwidth is still ideal. In the subsequent four steps, an implementation for the active part is synthesized. During those four steps the topology of the active part is synthesized such that optimum performance is obtained. Firstly, the input stage is designed with respect to noise performance. Secondly, the output stage is designed with respect to clipping distortion. Thirdly, the bandwidth performance is designed, which may require the addition of an additional amplifying stage. Finally, the biasing circuitry for biasing the amplifying stages is designed. By dividing the design in independent design steps, the total global optimization is reduced to several local optimizations. By the specific sequence of the design steps, it is assured that the local optimizations yield a circuit that is close to the global optimum. On top of that, because of the separate dedicated optimizations, the resource use, like power, is tracked clearly. Structured Electronic Design: Negative-Feedback Amplifiers presents in two chapters the background and an overview of the design methodology. Whereafter, in six chapters the separate design steps are treated with great detail. Each chapter comprises several exercises. An additional chapter is dedicated to how to design current sources and voltage source, which are required for the biasing. The final chapter in the book is dedicated to a thoroughly described design example, showing clearly the benefits of the design methodology. In short, this book is valuable for M.Sc.-curriculum Electrical Engineering students, and of course, for researchers and designers who want to structure their knowledge about analog design further.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Folding Table (Black) (1.8m)
 (1)
R1,299 R699 Discovery Miles 6 990
Nintendo Joy-Con Neon Controller Pair…
 (1)
R1,899 R1,729 Discovery Miles 17 290
The Handmaid's Tale - Season 4
Elisabeth Moss, Yvonne Strahovski, … DVD R416 Discovery Miles 4 160
Percy Jackson And The Olympians - 5-Book…
Rick Riordan Paperback R622 Discovery Miles 6 220
LocknLock Pet Dry Food Container (2.4L)
R186 Discovery Miles 1 860
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
The Cruel & Beautiful World Of Radio
Baydu Adams Paperback R310 R249 Discovery Miles 2 490
Vital BabyŽ HYGIENE™ Super Soft Hand…
R45 Discovery Miles 450
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100

 

Partners