Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.
This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, condional linear mid models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. How3ever, some other commercially available packages are discussed as well. Great care has been taken in presenting the data analyses in a software-independent fashion. Geert Verbeke is Assistant Professor at the Biostistical Centre of the Katholieke Universiteit Leuven in Belgium. He received the B.S. degree in mathematics (1989) from the Katholieke Universiteit Leuven, the M.S. in biostatistics (1992) from the Limburgs Universitair Centrum, and earned a Ph.D. in biostatistics (1995) from the Katholieke Universiteit Leuven. Dr. Verbeke wrote his dissertation, as well as a number of methodological articles, on various aspects of linear mixed models for longitudinal data analysis. He has held visiting positions at the Gerontology Research Center and the Johns Hopkins University. Geert Molenberghs is Assistant Professor of Biostatistics at the Limburgs Universitair Centrum in Belgium. He received the B.S. degree in mathematics (1988) and a Ph.D. in biostatistics (1993) from the Universiteit Antwerpen. Dr. Molenberghs published methodological work on the analysis of non-response in clinical and epidemiological studies. He serves as an associate editor for Biometrics, Applied Statistics, and Biostatistics, and is an officer of the Belgian Statistical Society. He has held visiting positions at the Harvard School of Public Health.
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory and applications. It also focuses on the assorted challenges that arise in analyzing longitudinal data. After discussing historical aspects, leading researchers explore four broad themes: parametric modeling, nonparametric and semiparametric methods, joint models, and incomplete data. Each of these sections begins with an introductory chapter that provides useful background material and a broad outline to set the stage for subsequent chapters. Rather than focus on a narrowly defined topic, chapters integrate important research discussions from the statistical literature. They seamlessly blend theory with applications and include examples and case studies from various disciplines. Destined to become a landmark publication in the field, this carefully edited collection emphasizes statistical models and methods likely to endure in the future. Whether involved in the development of statistical methodology or the analysis of longitudinal data, readers will gain new perspectives on the field.
Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.
This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Most analyses were done with the MIXED procedure of the SAS software package, but the data analyses are presented in a software-independent fashion.
The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.
This is author-approved bcc: This book provides a comprehensive treatment of linear mixed models, a technique devised to analyze continuous correlated data. It focuses on examples from designed experiments and longitudinal studies. The target audience includes applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematical rigorous. Although most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated, considerable effort was spent in presenting the data analyses in a software-independent fashion. Geert Verbeke is Assistant Professor at the Biostatistical Centre for Clinical Trials of the Katholieke Universiteit Leuven in Belgium. He received the B.S. degree in mathematics (1989) from the Katholieke Universiteit Leuven, the M.S. in biostatistics (1992) from the Limburgs Universitair Centrum, and earned a PhD in biostatistics (1995) from the Katholieke Universiteit Leuven. Dr. Verkeke wrote his dissertation, as well as a number of methodological articles, on various aspects on linear mixed models for longitudinal data analysis. He has held visiting positions at the Gerontology Researh Center and the Johns Hopkins University (Baltimore, MD). Geert Molenberghs is Assistant Professor of Biostatistics at the Limburgs Universitair Centrum in Belgium. He received the B.S. degree in mathematics (1988) and a PhD in biostatistics (1993) from the Universiteit Antwerpen. Dr. Molenberghs published methodological work on the analysis of non-response, and non-compliance in clinical trials. He serves as an associateeditor for Biometrics and Applied
This book provides a comprehensive treatment of linear mixed models
for continuous longitudinal data. Next to model formulation, this
edition puts major emphasis on exploratory data analysis for all
aspects of the model, such as the marginal model, subject-specific
profiles, and residual covariance structure. Further, model
diagnostics and missing data receive extensive treatment.
Sensitivity analysis for incomplete data is given a prominent
place.
|
You may like...
|