![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
Showing 1 - 3 of 3 matches in All Departments
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein's Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.
The controversial question of whether the majority of the narrow absorption lines observed in QSO spectra represent cosmological intervening systems or ejecta from the QSO themselves is settled. QSO absorption line spectroscopy, initially a mere technique, has matured into an essential extragalactic research tool for understanding the content of the Universe at redshifts between 0 and 4, and beyond. The only previous important meeting devoted to "QSO Absorption Lines" was held in May 1987 at the Space Telescope Science Institute in Baltimore, Maryland, U.S.A. Since that time, nearly a decade ago, research has been ex tremely active in this now well-established field of astrophysics. Theoretical stud ies and simulations have taken advantage of the constant progress in computer technology, and during these last few years, the observational results have bene fited largely from the new facillities offered by the Hubble Space Telescope in the UV wavelength range and the Keck Telescope for high-resolution spectroscopy.
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein's Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications.
|
You may like...
Computer Vision: Specialized Processors…
Eduard Montseny, Joan Frau
Hardcover
R2,749
Discovery Miles 27 490
Mining Very Large Databases with…
Alex A. Freitas, Simon H. Lavington
Hardcover
R5,260
Discovery Miles 52 600
Special Senate Investigation on Charges…
Committee On Government Operations
Paperback
R492
Discovery Miles 4 920
Guide to Canadian English Usage…
Margery Fee, Janice McAlpine
Hardcover
R1,132
Discovery Miles 11 320
United States Circuit Court of Appeals…
United States Circuit Court of Appeals
Hardcover
R906
Discovery Miles 9 060
Treasury Bulletin: November, 1946…
United States Treasury Department
Hardcover
R684
Discovery Miles 6 840
Applied Parallel Computing: Advanced…
Juha Fagerholm, Juha Haataja, …
Paperback
R2,920
Discovery Miles 29 200
|