![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Hardbound. This book deals with numerical methods for solving large sparse linear systems of equations, particularly those arising from the discretization of partial differential equations. It covers both direct and iterative methods. Direct methods which are considered are variants of Gaussian elimination and fast solvers for separable partial differential equations in rectangular domains. The book reviews the classical iterative methods like Jacobi, Gauss-Seidel and alternating directions algorithms. A particular emphasis is put on the conjugate gradient as well as conjugate gradient -like methods for non symmetric problems. Most efficient preconditioners used to speed up convergence are studied. A chapter is devoted to the multigrid method and the book ends with domain decomposition algorithms that are well suited for solving linear systems on parallel computers.
This expansive volume describes the history of numerical methods proposed to solve linear algebra problems,, from antiquity to the present day. The authors focus on methods for solving linear systems of equations and eigenvalue problems and describe the interplay between numerical methods and the computing tools available at the time. The second part of the book consists of 78 biographies of the main important contributors to the field. A Journey through the History of Numerical Linear Algebra will be of special interest to applied mathematicians, especially researchers in numerical linear algebra, and to applied mathematiciansas well as to and historians of mathematics as well.
This book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing. The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods' implementations and coding as Matlab (R)-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations.
This book aims to give an encyclopedic overview of the state-of-the-art of Krylov subspace iterative methods for solving nonsymmetric systems of algebraic linear equations and to study their mathematical properties. Solving systems of algebraic linear equations is among the most frequent problems in scientific computing; it is used in many disciplines such as physics, engineering, chemistry, biology, and several others. Krylov methods have progressively emerged as the iterative methods with the highest efficiency while being very robust for solving large linear systems; they may be expected to remain so, independent of progress in modern computer-related fields such as parallel and high performance computing. The mathematical properties of the methods are described and analyzed along with their behavior in finite precision arithmetic. A number of numerical examples demonstrate the properties and the behavior of the described methods. Also considered are the methods' implementations and coding as Matlab (R)-like functions. Methods which became popular recently are considered in the general framework of Q-OR (quasi-orthogonal )/Q-MR (quasi-minimum) residual methods. This book can be useful for both practitioners and for readers who are more interested in theory. Together with a review of the state-of-the-art, it presents a number of recent theoretical results of the authors, some of them unpublished, as well as a few original algorithms. Some of the derived formulas might be useful for the design of possible new methods or for future analysis. For the more applied user, the book gives an up-to-date overview of the majority of the available Krylov methods for nonsymmetric linear systems, including well-known convergence properties and, as we said above, template codes that can serve as the base for more individualized and elaborate implementations.
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
|
![]() ![]() You may like...
Beauty And The Beast - Blu-Ray + DVD
Emma Watson, Dan Stevens, …
Blu-ray disc
R334
Discovery Miles 3 340
The Lie Of 1652 - A Decolonised History…
Patric Tariq Mellet
Paperback
![]()
|