0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Hardcover): Andrea Montessori, Giacomo Falcucci Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Hardcover)
Andrea Montessori, Giacomo Falcucci
R1,839 Discovery Miles 18 390 Ships in 10 - 15 working days

Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.

Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Paperback): Andrea Montessori, Giacomo Falcucci Lattice Boltzmann Modeling of Complex Flows for Engineering Applications (Paperback)
Andrea Montessori, Giacomo Falcucci
R1,388 Discovery Miles 13 880 Ships in 10 - 15 working days

Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Emmas Small Big World
Anne Vogdt Hardcover R426 Discovery Miles 4 260
Dividend Investing - Simplified - The…
Mark Lowe Hardcover R690 R617 Discovery Miles 6 170
Sarah Buttons, Master Doll Maker
Jo E Moore Hardcover R583 Discovery Miles 5 830
Paw Patrol Treasury - Story Collection…
Paw Patrol Hardcover R440 R393 Discovery Miles 3 930
Sunsets & Full Moons
The Script CD R76 Discovery Miles 760
Nightshade Revenge
Anthony Horowitz Paperback R285 R258 Discovery Miles 2 580
End Game
Jeffrey Archer Hardcover R389 R299 Discovery Miles 2 990
Armaggeddon Shield 3 Notebook Bag(Black)
R419 Discovery Miles 4 190
Free Fall - Why South African…
Malcolm Ray Paperback  (5)
R320 R295 Discovery Miles 2 950
Progress Report of the Hydrometric…
M C (Murray Calder) D 1951 Hendry, Canada Dominion Water Power Branch Hardcover R892 Discovery Miles 8 920

 

Partners