Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This second edition provides new and updated methods that detail new DNA nanotechnology techniques. Chapters focus on DNA origami nanostructures for arranging matter in the nanoscale or on their manipulation with the aid of other technologies, on procedures for making nucleic acids nanostructures of different kinds, and methods to simulate complex nanostructures or to use them in biosensing. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, DNA Nanotechnology: Methods and Protocols, Second Edition aims to ensure successful results in the further study of this vital field.
Currently, nanotechnology is exposing the properties of DNA in unprecedented detail leading to new insights on the biological behavior and function of DNA. With the structural perfection of a self-assembling DNA nano-object, such as a DNA origami, it is clear how complex DNA is as a molecule, leading researchers to wonder how many different constructs could be designed and realized. "DNA Nanotechnology: Methods and Protocols" shows the procedures to follow in order to repeat methods that lead to such constructs or to the mastering of the characterization techniques used to study them. The chapters of this book are roughly divided into two parts: some cover the methods for preparing the nanostructures, from the rationale of the operations to the techniques for their handling, while other chapters deal more directly with advanced instrumental techniques that can manipulate and characterize molecules and nanostructures. Written in the highly successful "Methods in Molecular Biology " series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, "DNA Nanotechnology: Methods and Protocols "serves as an ideal guide to scientists of all backgrounds and aims to ignite interest and spur activity in this young and rapidly growing research field. Includes cutting-edge methods and protocols Provides step-by-step detail essential for reproducible results Contains key notes and implementation advice from the experts"
Detection of Pathogens in Water Using Micro and Nano-Technology aims to promote the uptake of innovative micro and nano-technological approaches towards the development of an integrated, cost-effective nano-biological sensor useful for security and environmental assays. The book describes the concerted efforts of a large European research project and the achievements of additional leading research groups. The reported knowledge and expertise should support in the innovation and integration of often separated unitary processes. Sampling, cell lysis and DNA/RNA extraction, DNA hybridisation detection micro- and nanosensors, microfluidics, together also with computational modelling and risk assessment can be integrated in the framework of the current and evolving European regulations and needs. The development and uptake of molecular methods is revolutionizing the field of waterborne pathogens detection, commonly performed with time-consuming cultural methods. The molecular detection methods are enabling the development of integrated instruments based on biosensor that will ultimately automate the full pathway of the microbiological analysis of water. Editors: Giampaolo Zuccheri, University of Bologna, Italy and Nikolaos Asproulis, Cranfield University, UK
The emission rates of greenhouse gases (GHGs) from individual onsite septic systems used for the management of domestic wastewater were determined in this study. A static flux chamber method was used to determine the emission rates of methane, carbon dioxide, and nitrous oxide gases from eight septic tanks and two soil dispersal systems. A technique developed for the measurement of gas flow and concentration at clean-out ports was used to determine the mass flow of gases moving through the household drainage and vent system. There was general agreement in the methane emission rates for the flux chamber and vent system methods. Several sources of variability in the emission rates were also identified. The septic tank was the primary source of methane, whereas the soil dispersal system was the principal source of carbon dioxide and nitrous oxide emissions. Methane concentrations from the soil dispersal system were found to be near ambient concentrations, similarly negligible amounts of nitrous oxide were found in the septic tank. All emissions originating in the soil dispersal system were discharged through the building vent as a result of natural, wind-induced flow. The gaseous emission rate data were determined to be geometrically distributed. The geometric mean and standard deviation (sg) of the total atmospheric emission rates for methane, carbon dioxide, and nitrous oxide based on samples from the vent system were estimated to be 10.7 (sg = 1.65), 335 (sg = 2.13), and 0.20 (sg = 3.62) g/capita*d, respectively. The corresponding total anthropogenic CO2 equivalence (CO2e) of the GHG emissions to the atmosphere, is about 0.1 tonne CO2e/capita*yr.
Currently, nanotechnology is exposing the properties of DNA in unprecedented detail leading to new insights on the biological behavior and function of DNA. With the structural perfection of a self-assembling DNA nano-object, such as a DNA origami, it is clear how complex DNA is as a molecule, leading researchers to wonder how many different constructs could be designed and realized. DNA Nanotechnology: Methods and Protocols shows the procedures to follow in order to repeat methods that lead to such constructs or to the mastering of the characterization techniques used to study them. The chapters of this book are roughly divided into two parts: some cover the methods for preparing the nanostructures, from the rationale of the operations to the techniques for their handling, while other chapters deal more directly with advanced instrumental techniques that can manipulate and characterize molecules and nanostructures. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, DNA Nanotechnology: Methods and Protocols serves as an ideal guide to scientists of all backgrounds and aims to ignite interest and spur activity in this young and rapidly growing research field. Includes cutting-edge methods and protocols Provides step-by-step detail essential for reproducible results Contains key notes and implementation advice from the experts
|
You may like...
|