0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 3 of 3 matches in All Departments

Geometric Control Theory and Sub-Riemannian Geometry (Hardcover, 2014 ed.): Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier,... Geometric Control Theory and Sub-Riemannian Geometry (Hardcover, 2014 ed.)
Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier, Andrey Sarychev, Mario Sigalotti
R3,728 Discovery Miles 37 280 Ships in 12 - 19 working days

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Geometric Control Theory and Sub-Riemannian Geometry (Paperback, Softcover reprint of the original 1st ed. 2014): Gianna... Geometric Control Theory and Sub-Riemannian Geometry (Paperback, Softcover reprint of the original 1st ed. 2014)
Gianna Stefani, Ugo Boscain, Jean-Paul Gauthier, Andrey Sarychev, Mario Sigalotti
R3,970 Discovery Miles 39 700 Ships in 10 - 15 working days

Honoring Andrei Agrachev's 60th birthday, this volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as sub-Riemannian, Finslerian geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume, etc.

Nonlinear and Optimal Control Theory - Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 19-29, 2004... Nonlinear and Optimal Control Theory - Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 19-29, 2004 (Paperback, 2008 ed.)
Andrei A. Agrachev; Edited by Paolo Nistri, Gianna Stefani; A.Stephen Morse, Eduardo D Sontag, …
R1,914 Discovery Miles 19 140 Ships in 10 - 15 working days

Mathematical Control Theory is a branch of Mathematics having as one of its main aims the establishment of a sound mathematical foundation for the c- trol techniques employed in several di?erent ?elds of applications, including engineering, economy, biologyandsoforth. Thesystemsarisingfromthese- plied Sciences are modeled using di?erent types of mathematical formalism, primarily involving Ordinary Di?erential Equations, or Partial Di?erential Equations or Functional Di?erential Equations. These equations depend on oneormoreparameters thatcanbevaried, andthusconstitute thecontrol - pect of the problem. The parameters are to be chosen soas to obtain a desired behavior for the system. From the many di?erent problems arising in Control Theory, the C. I. M. E. school focused on some aspects of the control and op- mization ofnonlinear, notnecessarilysmooth, dynamical systems. Two points of view were presented: Geometric Control Theory and Nonlinear Control Theory. The C. I. M. E. session was arranged in ?ve six-hours courses delivered by Professors A. A. Agrachev (SISSA-ISAS, Trieste and Steklov Mathematical Institute, Moscow), A. S. Morse (Yale University, USA), E. D. Sontag (Rutgers University, NJ, USA), H. J. Sussmann (Rutgers University, NJ, USA) and V. I. Utkin (Ohio State University Columbus, OH, USA). We now brie?y describe the presentations. Agrachev's contribution began with the investigation of second order - formation in smooth optimal control problems as a means of explaining the variational and dynamical nature of powerful concepts and results such as Jacobi ?elds, Morse's index formula, Levi-Civita connection, Riemannian c- vature.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Arctic Mirage - The 1913-1920 Expedition…
Winton U. Solberg Paperback R715 Discovery Miles 7 150
Bee Optimism - Translational Research…
Jay D Evans Hardcover R934 Discovery Miles 9 340
Antarctica - Tales of the Explorers
Edward K Tyler Hardcover R1,138 Discovery Miles 11 380
Buzz
Adam Langstroth Hardcover R457 Discovery Miles 4 570
How to Read and Critique Research - A…
Helen Aveyard, Nancy Preston, … Hardcover R2,367 Discovery Miles 23 670
SAS - The Illustrated History Of The SAS
Joshua Levine Paperback R337 R307 Discovery Miles 3 070
Clusterin, Volume 104
Saverio Bettuzzi, Sabina Pucci Hardcover R3,665 Discovery Miles 36 650
Across Boundaries - A Life In The Media…
Ton Vosloo Paperback R693 Discovery Miles 6 930
The "Whole Truth": Rethinking…
Micah D Kiel Hardcover R4,920 Discovery Miles 49 200
Psychology of...Horror Villains…
S L Yarbrough Hardcover R632 R575 Discovery Miles 5 750

 

Partners