Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 12 of 12 matches in All Departments
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
This book features a collection of revised and significantly extended versions of the papers accepted for presentation at the 6th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2017, held in conjunction with ECML-PKDD 2017 in Skopje, Macedonia, in September 2017. The book is composed of five parts: feature selection and induction; classification prediction; clustering; pattern discovery; applications. The workshop was aimed at discussing and introducing new algorithmic foundations and representation formalisms in complex pattern discovery. Finally, it encouraged the integration of recent results from existing fields, such as Statistics, Machine Learning and Big Data Analytics.
The importance of accurate recommender systems has been widely recognized by academia and industry, and recommendation is rapidly becoming one of the most successful applications of data mining and machine learning. Understanding and predicting the choices and preferences of users is a challenging task: real-world scenarios involve users behaving in complex situations, where prior beliefs, specific tendencies, and reciprocal influences jointly contribute to determining the preferences of users toward huge amounts of information, services, and products. Probabilistic modeling represents a robust formal mathematical framework to model these assumptions and study their effects in the recommendation process. This book starts with a brief summary of the recommendation problem and its challenges and a review of some widely used techniques Next, we introduce and discuss probabilistic approaches for modeling preference data. We focus our attention on methods based on latent factors, such as mixture models, probabilistic matrix factorization, and topic models, for explicit and implicit preference data. These methods represent a significant advance in the research and technology of recommendation. The resulting models allow us to identify complex patterns in preference data, which can be exploited to predict future purchases effectively. The extreme sparsity of preference data poses serious challenges to the modeling of user preferences, especially in the cases where few observations are available. Bayesian inference techniques elegantly address the need for regularization, and their integration with latent factor modeling helps to boost the performances of the basic techniques. We summarize the strengths and weakness of several approaches by considering two different but related evaluation perspectives, namely, rating prediction and recommendation accuracy. Furthermore, we describe how probabilistic methods based on latent factors enable the exploitation of preference patterns in novel applications beyond rating prediction or recommendation accuracy. We finally discuss the application of probabilistic techniques in two additional scenarios, characterized by the availability of side information besides preference data. In summary, the book categorizes the myriad probabilistic approaches to recommendations and provides guidelines for their adoption in real-world situations.
This book constitutes the thoroughly refereed conference proceedings of the First International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2012, held in conjunction with ECML/PKDD 2012, in Bristol, UK, in September 2012. The 15 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on mining rich (relational) datasets, mining complex patterns from miscellaneous data, mining complex patterns from trajectory and sequence data, and mining complex patterns from graphs and networks.
This book constitutes the proceedings of the 26th International Symposium on Foundations of Intelligent Systems, ISMIS 2022, held in Cosenza, Italy, in October 2022. The 31 regular papers, 11 short papers and 4 industrial papers presented in this volume were carefully reviewed and selected from 71 submissions. They were organized in topical sections as follows: Social Media and Recommendation; Natural Language Processing; Explainability; Intelligent Systems; Classification and Clustering; Complex Data; Medical Applications; Industrial Applications.
This book constitutes the refereed post-conference proceedings of the 8th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2019, held in conjunction with ECML-PKDD 2019 in Wurzburg, Germany, in September 2019. The workshop focused on the latest developments in the analysis of complex and massive data sources, such as blogs, event or log data, medical data, spatio-temporal data, social networks, mobility data, sensor data and streams.
The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016. The 123 full papers and 16 short papers presented were carefully reviewed and selected from a total of 460 submissions. The papers presented focus on practical and real-world studies of machine learning, knowledge discovery, data mining; innovative prototype implementations or mature systems that use machine learning techniques and knowledge discovery processes in a real setting; recent advances at the frontier of machine learning and data mining with other disciplines. Part I and Part II of the proceedings contain the full papers of the contributions presented in the scientific track and abstracts of the scientific plenary talks. Part III contains the full papers of the contributions presented in the industrial track, short papers describing demonstration, the nectar papers, and the abstracts of the industrial plenary talks.
The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016. The 123 full papers and 16 short papers presented were carefully reviewed and selected from a total of 460 submissions. The papers presented focus on practical and real-world studies of machine learning, knowledge discovery, data mining; innovative prototype implementations or mature systems that use machine learning techniques and knowledge discovery processes in a real setting; recent advances at the frontier of machine learning and data mining with other disciplines. Part I and Part II of the proceedings contain the full papers of the contributions presented in the scientific track and abstracts of the scientific plenary talks. Part III contains the full papers of the contributions presented in the industrial track, short papers describing demonstration, the nectar papers, and the abstracts of the industrial plenary talks.
This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2015, held in conjunction with ECML-PKDD 2015 in Porto, Portugal, in September 2015. The 15 revised full papers presented together with one invited talk were carefully reviewed and selected from 19 submissions. They illustrate advanced data mining techniques which preserve the informative richness of complex data and allow for efficient and effective identification of complex information units present in such data. The papers are organized in the following sections: data stream mining, classification, mining complex data, and sequences.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2014, held in conjunction with ECML-PKDD 2014 in Nancy, France, in September 2014. The 13 revised full papers presented were carefully reviewed and selected from numerous submissions. They illustrate advanced data mining techniques which preserve the informative richness of complex data and allow for efficient and effective identification of complex information units present in such data. The papers are organized in the following sections: classification and regression; clustering; data streams and sequences; applications.
This book constitutes the thoroughly refereed post-conference proceedings of the Second International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2013, held in conjunction with ECML/PKDD 2013 in Prague, Czech Republic, in September 2013. The 16 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on data streams and time series analysis, classification, clustering and pattern discovery, graphs, networks and relational data, machine learning and music data.
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|