Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book is intended as a textbook for a first-year graduate course on algebraic topology, with as strong flavoring in smooth manifold theory. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. It covers most of the topics all topologists will want students to see, including surfaces, Lie groups and fibre bundle theory. With a thoroughly modern point of view, it is the first truly new textbook in topology since Spanier, almost 25 years ago. Although the book is comprehensive, there is no attempt made to present the material in excessive generality, except where generality improves the efficiency and clarity of the presentation.
Primarily concerned with the study of cohomology theories of general topological spaces with "general coefficient systems", the parts of sheaf theory covered here are those areas important to algebraic topology. Among the many innovations in this book, the concept of the "tautness" of a subspace is introduced and exploited; the fact that sheaf theoretic cohomology satisfies the homotopy property is proved for general topological spaces; and relative cohomology is introduced into sheaf theory. A list of exercises at the end of each chapter helps students to learn the material, and solutions to many of the exercises are given in an appendix. This new edition of a classic has been substantially rewritten and now includes some 80 additional examples and further explanatory material, as well as new sections on Cech cohomology, the Oliver transfer, intersection theory, generalised manifolds, locally homogeneous spaces, homological fibrations and p- adic transformation groups. Readers should have a thorough background in elementary homological algebra and in algebraic topology.
Primarily concerned with the study of cohomology theories of general topological spaces with "general coefficient systems", the parts of sheaf theory covered here are those areas important to algebraic topology. Among the many innovations in this book, the concept of the "tautness" of a subspace is introduced and exploited; the fact that sheaf theoretic cohomology satisfies the homotopy property is proved for general topological spaces; and relative cohomology is introduced into sheaf theory. A list of exercises at the end of each chapter helps students to learn the material, and solutions to many of the exercises are given in an appendix. This new edition of a classic has been substantially rewritten and now includes some 80 additional examples and further explanatory material, as well as new sections on Cech cohomology, the Oliver transfer, intersection theory, generalised manifolds, locally homogeneous spaces, homological fibrations and p- adic transformation groups. Readers should have a thorough background in elementary homological algebra and in algebraic topology.
This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."--MATHEMATICAL REVIEWS
|
You may like...
|