Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
A book on any mathematical subject beyond the textbook level is of little value unless it contains new ideas and new perspectives. It helps to include new results, provided that they give the reader new insights and are presented along with known old results in a clear exposition. It is with this philosophy that the author writes this volume. The two subjects, Dirichlet series and modular forms, are traditional subjects, but here they are treated in both orthodox and unorthodox ways. Regardless of the unorthodox treatment, the author has made the book accessible to those who are not familiar with such topics by including plenty of expository material.
This book is divided into two parts. The first part is preliminary and consists of algebraic number theory and the theory of semisimple algebras. There are two principal topics: classification of quadratic forms and quadratic Diophantine equations. The second topic is a new framework which contains the investigation of Gauss on the sums of three squares as a special case. To make the book concise, the author proves some basic theorems in number theory only in some special cases. However, the book is self-contained when the base field is the rational number field, and the main theorems are stated with an arbitrary number field as the base field. So the reader familiar with class field theory will be able to learn the arithmetic theory of quadratic forms with no further references.
This is an advanced book on modular forms. While there are many books published about modular forms, they are written at an elementary level, and not so interesting from the viewpoint of a reader who already knows thebasics. This book offers something new, which may satisfy the desire of such a reader. However, we state every definition and every essential fact concerning classical modular forms of one variable. One of the principal new features of this book is the theory of modular forms of half-integral weight, another being the discussion of theta functions and Eisenstein series of holomorphic and nonholomorphic types. Thus the book is presented so that the reader can learn such theories systematically. Ultimately, we concentrate on the following two themes: (I) The correspondence between the forms of half-integral weight and those of integral weight. (II) The arithmeticity of various Dirichlet series associated with modular forms of integral or half-integral weight."
In this book, the author writes freely and often humorously about his life, beginning with his earliest childhood days. He describes his survival of American bombing raids when he was a teenager in Japan, his emergence as a researcher in a post-war university system that was seriously deficient, and his life as a mature mathematician in Princeton and in the international academic community. Every page of this memoir contains personal observations and striking stories. Such luminaries as Chevalley, Oppenheimer, Siegel, and Weil figure prominently in its anecdotes. Goro Shimura is Professor Emeritus of Mathematics at Princeton University. In 1996, he received the Leroy P. Steele Prize for Lifetime Achievement from the American Mathematical Society. He is the author of Elementary Dirichlet Series and Modular Forms (Springer 2007), Arithmeticity in the Theory of Automorphic Forms (AMS 2000), and Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press 1971)."
In 1996 the AMS awarded Goro Shimura the Steele Prize for Lifetime Achievement: "To Goro Shimura for his important and extensive work on arithmetical geometry and automorphic forms; concepts introduced by him were often seminal, and fertile ground for new developments, as witnessed by the many notations in number theory that carry his name and that have long been familiar to workers in the field." 103 of Shimuras most important papers are collected in four volumes. Volume III contains his mathematical papers from 1978 to 1988 and some notes to the articles.
In 1996 the AMS awarded Goro Shimura the Steele Prize for Lifetime Achievement: "To Goro Shimura for his important and extensive work on arithmetical geometry and automorphic forms; concepts introduced by him were often seminal, and fertile ground for new developments, as witnessed by the many notations in number theory that carry his name and that have long been familiar to workers in the field." 103 of Shimuras most important papers are collected in four volumes. Volume IV contains his mathematical papers from 1989 to 2001 and some notes to the articles.
In 1996 the AMS awarded Goro Shimura the Steele Prize for Lifetime Achievement :" To Goro Shimura for his important and extensive work on arithmetical geometry and automorphic forms; concepts introduced by him were often seminal, and fertile ground for new developments, as witnessed by the many notations in number theory that carry his name and that have long been familiar to workers in the field.." 103 of Shimuras most important papers are collected in four volumes. Volume I contains his mathematical papers from 1954 to 1966 and some notes to the articles.
In 1996 the AMS awarded Goro Shimura the Steele Prize for Lifetime Achievement :" To Goro Shimura for his important and extensive work on arithmetical geometry and automorphic forms; concepts introduced by him were often seminal, and fertile ground for new developments, as witnessed by the many notations in number theory that carry his name and that have long been familiar to workers in the field." 103 of Shimuras most important papers are collected in four volumes. Volume II contains his mathematical papers from 1967 to 1977 and some notes to the articles.
This is an advanced book on modular forms. While there are many books published about modular forms, they are written at an elementary level, and not so interesting from the viewpoint of a reader who already knows the basics. This book offers something new, which may satisfy the desire of such a reader. However, we state every definition and every essential fact concerning classical modular forms of one variable. One of the principal new features of this book is the theory of modular forms of half-integral weight, another being the discussion of theta functions and Eisenstein series of holomorphic and nonholomorphic types. Thus the book is presented so that the reader can learn such theories systematically.
This book is divided into two parts. The first part is preliminary and consists of algebraic number theory and the theory of semisimple algebras. There are two principal topics: classification of quadratic forms and quadratic Diophantine equations. The second topic is a new framework which contains the investigation of Gauss on the sums of three squares as a special case. To make the book concise, the author proves some basic theorems in number theory only in some special cases. However, the book is self-contained when the base field is the rational number field, and the main theorems are stated with an arbitrary number field as the base field. So the reader familiar with class field theory will be able to learn the arithmetic theory of quadratic forms with no further references.
A book on any mathematical subject beyond the textbook level is of little value unless it contains new ideas and new perspectives. It helps to include new results, provided that they give the reader new insights and are presented along with known old results in a clear exposition. It is with this philosophy that the author writes this volume. The two subjects, Dirichlet series and modular forms, are traditional subjects, but here they are treated in both orthodox and unorthodox ways. Regardless of the unorthodox treatment, the author has made the book accessible to those who are not familiar with such topics by including plenty of expository material.
In this book, the author writes freely and often humorously about his life, beginning with his earliest childhood days. He describes his survival of American bombing raids when he was a teenager in Japan, his emergence as a researcher in a post-war university system that was seriously deficient, and his life as a mature mathematician in Princeton and in the international academic community. Every page of this memoir contains personal observations and striking stories. Such luminaries as Chevalley, Oppenheimer, Siegel, and Weil figure prominently in its anecdotes. Goro Shimura is Professor Emeritus of Mathematics at Princeton University. In 1996, he received the Leroy P. Steele Prize for Lifetime Achievement from the American Mathematical Society. He is the author of Elementary Dirichlet Series and Modular Forms (Springer 2007), Arithmeticity in the Theory of Automorphic Forms (AMS 2000), and Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press 1971)."
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Reciprocity laws of various kinds play a central role in number theory. In the easiest case, one obtains a transparent formulation by means of roots of unity, which are special values of exponential functions. A similar theory can be developed for special values of elliptic or elliptic modular functions, and is called complex multiplication of such functions. In 1900 Hilbert proposed the generalization of these as the twelfth of his famous problems. In this book, Goro Shimura provides the most comprehensive generalizations of this type by stating several reciprocity laws in terms of abelian varieties, theta functions, and modular functions of several variables, including Siegel modular functions. This subject is closely connected with the zeta function of an abelian variety, which is also covered as a main theme in the book. The third topic explored by Shimura is the various algebraic relations among the periods of abelian integrals. The investigation of such algebraicity is relatively new, but has attracted the interest of increasingly many researchers. Many of the topics discussed in this book have not been covered before. In particular, this is the first book in which the topics of various algebraic relations among the periods of abelian integrals, as well as the special values of theta and Siegel modular functions, are treated extensively.
|
You may like...
Essential EU Climate Law
Edwin Woerdman, Martha Roggenkamp, …
Hardcover
R3,737
Discovery Miles 37 370
Hydraulic fracturing in the Karoo…
Jan Glazewski, Surina Esterhuyse
Paperback
Handbook on Strategic Environmental…
Thomas B Fischer, Ainhoa Gonzalez
Hardcover
R6,253
Discovery Miles 62 530
Palaces Of Stone - Uncovering Ancient…
Mike Main, Thomas Huffman
Paperback
Neuroimaging and Psychosocial Addiction…
Sarah W. Feldstein Ewing, Katie Witkiewitz, …
Hardcover
R3,375
Discovery Miles 33 750
Being A Black Springbok - The Thando…
Sibusiso Mjikeliso
Paperback
(2)
Little Bird Of Auschwitz - How My Mother…
Alina Peretti, Jacques Peretti
Paperback
|