Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
Plants use resources, i.e. carbon, nutrients, water and energy, either for growth or to defend themselves from biotic and abiotic stresses. This volume provides a timely understanding of resource allocation and its regulation in plants, linking the molecular with biochemical and physiological-level processes. Ecological scenarios covered include competitors, pathogens, herbivores, mycorrhizae, soil microorganisms, carbon dioxide/ozone regimes, nitrogen and light availabilities. The validity of the Growth-Differentiation Balance Hypothesis is examined and novel theoretical concepts and approaches to modelling plant resource allocation are discussed. The results presented can be applied in plant breeding and engineering, as well as in resource-efficient stand management in agriculture and forestry. "
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
The aim of this book is to improve the understanding of forest dynamics and the sustainable management of forest ecosystems. How do tree crowns, trees or entire forest stands respond to thinning in the long term? What effect do tree species mixtures and multi-layering have on the productivity and stability of trees, stands or forest enterprises? How do tree and stand growth respond to stress factors such as climate change or air pollution? Furthermore, in the event that one has acquired knowledge about the effects of thinning, mixture and stress, how can one make that knowledge applicable to decision-making in forestry practice? The experimental designs, analytical methods, general relationships and models for answering questions of this kind are the focus of this book. Given the structures dealt with, which range from plant organs to the tree, stand and enterprise levels, and the processes analysed in a time frame of days or months to decades or even centuries, this book is directed at all readers interested in trees, forest stands and forest ecosystems. This work has been compiled for students, scientists, lecturers, forest planners, forest managers, and consultants.
With one volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of the plant sciences. This latest volume includes reviews on plant physiology, biochemistry, genetics and genomics, forests, and ecosystems.
Plants use resources, i.e. carbon, nutrients, water and energy, either for growth or to defend themselves from biotic and abiotic stresses. This volume provides a timely understanding of resource allocation and its regulation in plants, linking the molecular with biochemical and physiological-level processes. Ecological scenarios covered include competitors, pathogens, herbivores, mycorrhizae, soil microorganisms, carbon dioxide/ozone regimes, nitrogen and light availabilities. The validity of the "Growth-Differentiation Balance Hypothesis" is examined and novel theoretical concepts and approaches to modelling plant resource allocation are discussed. The results presented can be applied in plant breeding and engineering, as well as in resource-efficient stand management in agriculture and forestry.
The aim of this book is to improve the understanding of forest dynamics and the sustainable management of forest ecosystems. How do tree crowns, trees or entire forest stands respond to thinning in the long term? What effect do tree species mixtures and multi-layering have on the productivity and stability of trees, stands or forest enterprises? How do tree and stand growth respond to stress factors such as climate change or air pollution? Furthermore, in the event that one has acquired knowledge about the effects of thinning, mixture and stress, how can one make that knowledge applicable to decision-making in forestry practice? The experimental designs, analytical methods, general relationships and models for answering questions of this kind are the focus of this book. Given the structures dealt with, which range from plant organs to the tree, stand and enterprise levels, and the processes analysed in a time frame of days or months to decades or even centuries, this book is directed at all readers interested in trees, forest stands and forest ecosystems. This work has been compiled for students, scientists, lecturers, forest planners, forest managers, and consultants.
The capacity of mixed forests to mitigate climate change effects by increasing resilience and lowering risks is pinpointed as an opportunity to highlight the role of tree species rich forests as part of complex socio-ecological systems. This book updates and presents the state-of-the-art of mixed forest performance in terms of regeneration, growth, yield and delivery of ecosystem services. Examples from more than 20 countries in Europe, North Africa and South America provide insights on the interplay between structure and functionining, stability, silviculture and optimization of management of this type of forests. The book also analyses the role of natural mixed forests and mixed plantations in the delivery of ecosystem services and the best modelling strategy to study mixed forest dynamics. The book is intended to serve as a reference tool for students, researchers and professionals concerned about the management of mixed forests in a context of social and environmental change.
|
You may like...
|