![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.
This IMA Volume in ~athematics and its Applications PERCOLATION THEORY AND ERGODIC THEORY OF INFINITE PARTICLE SYSTEMS represents the proceedings of a workshop which was an integral part of the 19R4-85 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS We are grateful to the Scientific Committee: naniel Stroock (Chairman) Wendell Fleming Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaoo for planning and implementing an exciting and stimulating year-long program. We especially thank the Workshop Organizing Committee, Harry Kesten (Chairman), Richard Holley, and Thomas Liggett for organizing a workshop which brought together scientists and mathematicians in a variety of areas for a fruitful exchange of ideas. George R. Sell Hans Weinherger PREFACE Percolation theory and interacting particle systems both have seen an explosive growth in the last decade. These suhfields of probability theory are closely related to statistical mechanics and many of the publications on these suhjects (especially on the former) appear in physics journals, wit~ a great variahility in the level of rigour. There is a certain similarity and overlap hetween the methods used in these two areas and, not surprisingly, they tend to attract the same probabilists. It seemed a good idea to organize a workshop on "Percolation Theory and Ergodic Theory of Infinite Particle Systems" in the framework of the special probahility year at the Institute for Mathematics and its Applications in 1985-86. Such a workshop, dealing largely with rigorous results, was indeed held in February 1986.
Grimmett, Geoffrey: Percolation and disordered systems.- Kesten, Harry: Aspects of first passage percolation. "
Most probability problems involve random variables indexed by space and/or time. These problems almost always have a version in which space and/or time are taken to be discrete. This volume deals with areas in which the discrete version is more natural than the continuous one, perhaps even the only one than can be formulated without complicated constructions and machinery. The 5 papers of this volume discuss problems in which there has been significant progress in the last few years; they are motivated by, or have been developed in parallel with, statistical physics. They include questions about asymptotic shape for stochastic growth models and for random clusters; existence, location and properties of phase transitions; speed of convergence to equilibrium in Markov chains, and in particular for Markov chains based on models with a phase transition; cut-off phenomena for random walks. The articles can be read independently of each other. Their unifying theme is that of models built on discrete spaces or graphs. Such models are often easy to formulate. Correspondingly, the book requires comparatively little previous knowledge of the machinery of probability.
|
![]() ![]() You may like...
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|