0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Model Reduction of Complex Dynamical Systems (Hardcover, 1st ed. 2021): Peter Benner, Tobias Breiten, Heike Fassbender, Michael... Model Reduction of Complex Dynamical Systems (Hardcover, 1st ed. 2021)
Peter Benner, Tobias Breiten, Heike Fassbender, Michael Hinze, Tatjana Stykel, …
R3,821 Discovery Miles 38 210 Ships in 12 - 17 working days

This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems - MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.

Symplectic Methods for the Symplectic Eigenproblem (Hardcover, 2002 ed.): Heike Fassbender Symplectic Methods for the Symplectic Eigenproblem (Hardcover, 2002 ed.)
Heike Fassbender
R3,096 Discovery Miles 30 960 Ships in 10 - 15 working days

The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.

Model Reduction of Complex Dynamical Systems (Paperback, 1st ed. 2021): Peter Benner, Tobias Breiten, Heike Fassbender, Michael... Model Reduction of Complex Dynamical Systems (Paperback, 1st ed. 2021)
Peter Benner, Tobias Breiten, Heike Fassbender, Michael Hinze, Tatjana Stykel, …
R4,229 Discovery Miles 42 290 Ships in 10 - 15 working days

This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems - MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.

Symplectic Methods for the Symplectic Eigenproblem (Paperback, Softcover reprint of the original 1st ed. 2000): Heike Fassbender Symplectic Methods for the Symplectic Eigenproblem (Paperback, Softcover reprint of the original 1st ed. 2000)
Heike Fassbender
R3,017 Discovery Miles 30 170 Ships in 10 - 15 working days

The solution of eigenvalue problems is an integral part of many scientific computations. For example, the numerical solution of problems in structural dynamics, electrical networks, macro-economics, quantum chemistry, and c- trol theory often requires solving eigenvalue problems. The coefficient matrix of the eigenvalue problem may be small to medium sized and dense, or large and sparse (containing many zeroelements). In the past tremendous advances have been achieved in the solution methods for symmetric eigenvalue pr- lems. The state of the art for nonsymmetric problems is not so advanced; nonsymmetric eigenvalue problems can be hopelessly difficult to solve in some situations due, for example, to poor conditioning. Good numerical algorithms for nonsymmetric eigenvalue problems also tend to be far more complex than their symmetric counterparts. This book deals with methods for solving a special nonsymmetric eig- value problem; the symplectic eigenvalue problem. The symplectic eigenvalue problem is helpful, e.g., in analyzing a number of different questions that arise in linear control theory for discrete-time systems. Certain quadratic eigenvalue problems arising, e.g., in finite element discretization in structural analysis, in acoustic simulation of poro-elastic materials, or in the elastic deformation of anisotropic materials can also lead to symplectic eigenvalue problems. The problem appears in other applications as well.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Loot
Nadine Gordimer Paperback  (2)
R205 R168 Discovery Miles 1 680
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Dog's Life Ballistic Nylon Waterproof…
R999 R589 Discovery Miles 5 890
Koh-i-Noor Progresso Woodless…
R1,988 Discovery Miles 19 880
Home Classix Double Wall Tumbler (360ml…
R89 R73 Discovery Miles 730
Microsoft Xbox Series Wireless…
R1,699 R1,589 Discovery Miles 15 890
Tenet
John David Washington, Robert Pattinson, … DVD  (1)
R51 Discovery Miles 510
Dala A2 Sketch Pad (120gsm)(36 Sheets)
R260 Discovery Miles 2 600
ZA Cute Puppy Love Paw Set (Necklace…
R712 R499 Discovery Miles 4 990

 

Partners