Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
This book describes the emergent endohedral metallofullerene, lithium-containing fullerene Li@C60, with an overview from its history to recent application research. The book covers synthesis, preparation, purification, structure, physical and chemical properties, derivatization, computational theoretical studies, and device application of Li@C60. Readers can learn cutting-edge nanotechnology of this exotic nanocarbon material, which is expected to deliver future solutions in clean energy and bio devices. This work is by a researcher who has long experience in carbon nanomaterials-more than 15 years with his contributing coworkers. The level of the book is appropriate for graduate students, post-docs researchers, and young faculty members who are interested in nanomaterials from the point of view of chemistry and physics.
This book describes the emergent endohedral metallofullerene, lithium-containing fullerene Li@C60, with an overview from its history to recent application research. The book covers synthesis, preparation, purification, structure, physical and chemical properties, derivatization, computational theoretical studies, and device application of Li@C60. Readers can learn cutting-edge nanotechnology of this exotic nanocarbon material, which is expected to deliver future solutions in clean energy and bio devices. This work is by a researcher who has long experience in carbon nanomaterials-more than 15 years with his contributing coworkers. The level of the book is appropriate for graduate students, post-docs researchers, and young faculty members who are interested in nanomaterials from the point of view of chemistry and physics.
This lecture note provides a tutorial review of non-Abelian discrete groups and presents applications to particle physics where discrete symmetries constitute an important principle for model building. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics-particularly model building beyond the standard model-non-Abelian discrete symmetries have been applied particularly to understand the three-generation flavor structure. The non-Abelian discrete symmetries are indeed considered to be the most attractive choice for a flavor sector: Model builders have tried to derive experimental values of quark and lepton masses, mixing angles and CP phases on the assumption of non-Abelian discrete flavor symmetries of quarks and leptons, yet lepton mixing has already been intensively discussed in this context as well. Possible origins of the non-Abelian discrete symmetry for flavors are another topic of interest, as they can arise from an underlying theory, e.g., the string theory or compactification via orbifolding as geometrical symmetries such as modular symmetries, thereby providing a possible bridge between the underlying theory and corresponding low-energy sector of particle physics. The book offers explicit introduction to the group theoretical aspects of many concrete groups, and readers learn how to derive conjugacy classes, characters, representations, tensor products, and automorphisms for these groups (with a finite number) when algebraic relations are given, thereby enabling readers to apply this to other groups of interest. Further, CP symmetry and modular symmetry are also presented.
|
You may like...
|