0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Responsible Graph Neural Networks (Paperback): Nour Moustafa, Mohamed Abdel-Basset, Zahir Tari, Hossam Hawash Responsible Graph Neural Networks (Paperback)
Nour Moustafa, Mohamed Abdel-Basset, Zahir Tari, Hossam Hawash
R1,502 Discovery Miles 15 020 Ships in 12 - 19 working days

More frequent and complex cyber threats require robust, automated and rapid responses from cyber security specialists. This book offers a complete study in the area of graph learning in cyber, emphasising graph neural networks (GNNs) and their cyber security applications. Three parts examine the basics; methods and practices; and advanced topics. The first part presents a grounding in graph data structures and graph embedding and gives a taxonomic view of GNNs and cyber security applications. Part two explains three different categories of graph learning including deterministic, generative and reinforcement learning and how they can be used for developing cyber defence models. The discussion of each category covers the applicability of simple and complex graphs, scalability, representative algorithms and technical details. Undergraduate students, graduate students, researchers, cyber analysts, and AI engineers looking to understand practical deep learning methods will find this book an invaluable resource.

Responsible Graph Neural Networks (Hardcover): Nour Moustafa, Mohamed Abdel-Basset, Zahir Tari, Hossam Hawash Responsible Graph Neural Networks (Hardcover)
Nour Moustafa, Mohamed Abdel-Basset, Zahir Tari, Hossam Hawash
R2,583 Discovery Miles 25 830 Ships in 12 - 19 working days

More frequent and complex cyber threats require robust, automated and rapid responses from cyber security specialists. This book offers a complete study in the area of graph learning in cyber, emphasising graph neural networks (GNNs) and their cyber security applications. Three parts examine the basics; methods and practices; and advanced topics. The first part presents a grounding in graph data structures and graph embedding and gives a taxonomic view of GNNs and cyber security applications. Part two explains three different categories of graph learning including deterministic, generative and reinforcement learning and how they can be used for developing cyber defence models. The discussion of each category covers the applicability of simple and complex graphs, scalability, representative algorithms and technical details. Undergraduate students, graduate students, researchers, cyber analysts, and AI engineers looking to understand practical deep learning methods will find this book an invaluable resource.

Deep Learning Techniques for IoT Security and Privacy (Hardcover, 1st ed. 2022): Mohamed Abdel-Basset, Nour Moustafa, Hossam... Deep Learning Techniques for IoT Security and Privacy (Hardcover, 1st ed. 2022)
Mohamed Abdel-Basset, Nour Moustafa, Hossam Hawash, Weiping Ding
R4,586 Discovery Miles 45 860 Ships in 12 - 19 working days

This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.

Deep Learning Techniques for IoT Security and Privacy (Paperback, 1st ed. 2022): Mohamed Abdel-Basset, Nour Moustafa, Hossam... Deep Learning Techniques for IoT Security and Privacy (Paperback, 1st ed. 2022)
Mohamed Abdel-Basset, Nour Moustafa, Hossam Hawash, Weiping Ding
R4,590 Discovery Miles 45 900 Ships in 10 - 15 working days

This book states that the major aim audience are people who have some familiarity with Internet of things (IoT) but interested to get a comprehensive interpretation of the role of deep Learning in maintaining the security and privacy of IoT. A reader should be friendly with Python and the basics of machine learning and deep learning. Interpretation of statistics and probability theory will be a plus but is not certainly vital for identifying most of the book's material.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Architect & Sculptor RAs - A Guide…
Dennis Toff Paperback R172 R146 Discovery Miles 1 460
Pinpoint Maths Year 3 Problem Solving…
Jon Kurta Cards R2,349 Discovery Miles 23 490
Wipe-clean Times Tables 5-6
Holly Bathie Paperback  (1)
R198 Discovery Miles 1 980
See Touch Feel: Numbers
Priddy Books, Roger Priddy Board book R100 R91 Discovery Miles 910
Mathematics - Connection And Beyond…
Tin Lam Toh, Ban Heng Choy Hardcover R2,590 Discovery Miles 25 900
Guarding the Pugin Flame
Michael Fisher Hardcover R2,053 Discovery Miles 20 530
A View from the Moon (Hardcover…
Ted C Luna Hardcover R1,226 R1,033 Discovery Miles 10 330
Royal Gourmet Charcoal Grill & Smoker…
Barb Stella Hardcover R690 Discovery Miles 6 900
Philadelphia Area Architecture of Horace…
Rachel Hildebrandt, Old York Road Historical Society Hardcover R781 R686 Discovery Miles 6 860
Let's do Times Tables 8-9
Andrew Brodie Paperback R160 R148 Discovery Miles 1 480

 

Partners