0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Map ProjectionsTheory and Applications - Theory and Applications (Hardcover, 2nd Ed): II Pearson Map ProjectionsTheory and Applications - Theory and Applications (Hardcover, 2nd Ed)
II Pearson
R9,894 Discovery Miles 98 940 Ships in 12 - 19 working days

About the Author: Frederick Pearson has extensive experience in teaching map projection at the Air Force Cartography School and Virginia Polytechnic Institute. He developed star charts, satellite trajectory programs, and a celestial navigation device for the Aeronautical Chart and Information Center. He is an expert in orbital analysis of satellites, and control and guidance systems. At McDonnell-Douglas, he worked on the guidance system for the space shuttle. This text develops the plotting equations for the major map projections. The emphasis is on obtaining usable algorithms for computed aided plotting and CRT display. The problem of map projection is stated, and the basic terminology is introduced. The required fundamental mathematics is reviewed, and transformation theory is developed. Theories from differential geometry are particularized for the transformation from a sphere or spheroid as the model of the earth onto a selected plotting surface. The most current parameters to describe the figure of the earth are given. Formulas are included to calculate meridian length, parallel length, geodetic and geocentric latitude, azimuth, and distances on the sphere or spheroid. Equal area, conformal, and conventional projection transformations are derived. All result in direct transformation from geographic to cartesian coordinates. For selected projections, inverse transformations from cartesian to geographic coordinates are given. Since the avoidance of distortion is important, the theory of distortion is explored. Formulas are developed to give a quantitative estimate of linear, area, and angular distortions. Extended examples are given for several mapping problems of interest. Computer applications, and efficient algorithms are presented. This book is an appropriate text for a course in the mathematical aspects of mapping and cartography. Map projections are of interest to workers in many fields. Some of these are mathematicians, engineers, surveyors, geodicests, geographers, astronomers, and military intelligence analysts and strategists.

Map ProjectionsTheory and Applications - Theory and Applications (Paperback): II Pearson Map ProjectionsTheory and Applications - Theory and Applications (Paperback)
II Pearson
R1,970 Discovery Miles 19 700 Ships in 9 - 17 working days

About the Author: Frederick Pearson has extensive experience in teaching map projection at the Air Force Cartography School and Virginia Polytechnic Institute. He developed star charts, satellite trajectory programs, and a celestial navigation device for the Aeronautical Chart and Information Center. He is an expert in orbital analysis of satellites, and control and guidance systems. At McDonnell-Douglas, he worked on the guidance system for the space shuttle. This text develops the plotting equations for the major map projections. The emphasis is on obtaining usable algorithms for computed aided plotting and CRT display. The problem of map projection is stated, and the basic terminology is introduced. The required fundamental mathematics is reviewed, and transformation theory is developed. Theories from differential geometry are particularized for the transformation from a sphere or spheroid as the model of the earth onto a selected plotting surface. The most current parameters to describe the figure of the earth are given. Formulas are included to calculate meridian length, parallel length, geodetic and geocentric latitude, azimuth, and distances on the sphere or spheroid. Equal area, conformal, and conventional projection transformations are derived. All result in direct transformation from geographic to cartesian coordinates. For selected projections, inverse transformations from cartesian to geographic coordinates are given. Since the avoidance of distortion is important, the theory of distortion is explored. Formulas are developed to give a quantitative estimate of linear, area, and angular distortions. Extended examples are given for several mapping problems of interest. Computer applications, and efficient algorithms are presented. This book is an appropriate text for a course in the mathematical aspects of mapping and cartography. Map projections are of interest to workers in many fields. Some of these are mathematicians, engineers, surveyors, geodi

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Driving Demand for Broadband Networks…
Raul L. Katz, Taylor A. Berry Hardcover R3,641 Discovery Miles 36 410
Daler Rowney Sapphire Brush Series 52…
R1,277 R1,050 Discovery Miles 10 500
Fundamentals of Software Startups…
Anh Nguyen Duc, Jurgen Munch, … Hardcover R2,311 Discovery Miles 23 110
Pro Arte Pure Sable Watercolour Brush…
R142 R131 Discovery Miles 1 310
Imagining Britain's Economic Future…
David Thackeray, Andrew Thompson, … Hardcover R3,409 Discovery Miles 34 090
Grinding It Out - The Making of…
Ray Kroc Paperback  (1)
R446 R377 Discovery Miles 3 770
China - Trade, Foreign Direct…
Yanqing Jiang Hardcover R2,848 R2,344 Discovery Miles 23 440
The Death Of Democracy - Hitler's Rise…
Benjamin Carter Hett Paperback  (1)
R333 R302 Discovery Miles 3 020
Isabey Isacryl Pure Squirrel Flat Wash…
R1,424 R1,162 Discovery Miles 11 620
The Psychology of the Language Learner…
Zoltan Doernyei Hardcover R4,486 Discovery Miles 44 860

 

Partners