0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • -
Status
Brand

Showing 1 - 1 of 1 matches in All Departments

Elastic Shape Analysis of Three-Dimensional Objects (Paperback): Ian H Jermyn, Sebastian Kurtek, Hamid Laga, Anuj Srivastava Elastic Shape Analysis of Three-Dimensional Objects (Paperback)
Ian H Jermyn, Sebastian Kurtek, Hamid Laga, Anuj Srivastava
R1,579 Discovery Miles 15 790 Ships in 10 - 15 working days

Statistical analysis of shapes of 3D objects is an important problem with a wide range of applications. This analysis is difficult for many reasons, including the fact that objects differ in both geometry and topology. In this manuscript, we narrow the problem by focusing on objects with fixed topology, say objects that are diffeomorphic to unit spheres, and develop tools for analyzing their geometries. The main challenges in this problem are to register points across objects and to perform analysis while being invariant to certain shape-preserving transformations. We develop a comprehensive framework for analyzing shapes of spherical objects, i.e., objects that are embeddings of a unit sphere in #x211D;, including tools for: quantifying shape differences, optimally deforming shapes into each other, summarizing shape samples, extracting principal modes of shape variability, and modeling shape variability associated with populations. An important strength of this framework is that it is elastic: it performs alignment, registration, and comparison in a single unified framework, while being invariant to shape-preserving transformations. The approach is essentially Riemannian in the following sense. We specify natural mathematical representations of surfaces of interest, and impose Riemannian metrics that are invariant to the actions of the shape-preserving transformations. In particular, they are invariant to reparameterizations of surfaces. While these metrics are too complicated to allow broad usage in practical applications, we introduce a novel representation, termed square-root normal fields (SRNFs), that transform a particular invariant elastic metric into the standard L(2) metric. As a result, one can use standard techniques from functional data analysis for registering, comparing, and summarizing shapes. Specifically, this results in: pairwise registration of surfaces; computation of geodesic paths encoding optimal deformations; computation of Karcher means and covariances under the shape metric; tangent Principal Component Analysis (PCA) and extraction of dominant modes of variability; and finally, modeling of shape variability using wrapped normal densities. These ideas are demonstrated using two case studies: the analysis of surfaces denoting human bodies in terms of shape and pose variability; and the clustering and classification of the shapes of subcortical brain structures for use in medical diagnosis. This book develops these ideas without assuming advanced knowledge in differential geometry and statistics. We summarize some basic tools from differential geometry in the appendices, and introduce additional concepts and terminology as needed in the individual chapters.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Goldair GBF-809 Rechargeable Box Fan…
R454 R399 Discovery Miles 3 990
Loot
Nadine Gordimer Paperback  (2)
R398 R369 Discovery Miles 3 690
Poop Scoopa
R399 R278 Discovery Miles 2 780
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan Paperback R380 R356 Discovery Miles 3 560
Our Girl - Season 2
Michelle Keegan DVD R85 Discovery Miles 850
Fine Living Folding Table (Black) (1.8m)
 (1)
R1,299 R899 Discovery Miles 8 990
Xbox One Replacement Case
 (8)
R60 Discovery Miles 600
Ugreen SATA 15Pin To 6Pin PCI E Adapter…
R32 Discovery Miles 320
Loot
Nadine Gordimer Paperback  (2)
R398 R369 Discovery Miles 3 690
JCB Jogger Shoe (Black)
R1,179 Discovery Miles 11 790

 

Partners