Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 36 matches in All Departments
This book covers emerging energy storage technologies and material characterization methods along with various systems and applications in building, power generation systems and thermal management. The authors present options available for reducing the net energy consumption for heating/cooling, improving the thermal properties of the phase change materials and optimization methods for heat storage embedded multi-generation systems. An in-depth discussion on the natural convection-driven phase change is included. The book also discusses main energy storage options for thermal management practices in photovoltaics and phase change material applications that aim passive thermal control. This book will appeal to researchers and professionals in the fields of mechanical engineering, chemical engineering, electrical engineering, renewable energy, and thermodynamics. It can also be used as an ancillary text in upper-level undergraduate courses and graduate courses in these fields.
This multi-disciplinary volume presents information on the
state-of-the-art in sustainable energy technologies key to tackling
the world s energy challenges and achieving environmentally benign
solutions. Its unique amalgamation of the latest technical
information, research findings and examples of successfully applied
new developments in the area of sustainable energy will be of keen
interest to engineers, students, practitioners, scientists and
researchers working with sustainable energy technologies. Problem
statements, projections, new concepts, models, experiments,
measurements and simulations from not only engineering and science,
but disciplines as diverse as ecology, education, economics and
information technology are included, in order to create a truly
holistic vision of the sustainable energy field. The
contributionsfeature coverage of topicsincluding solar and wind
energy, biomass and biofuels, waste-to-energy, renewable fuels,
geothermal and hydrogen power, efficiency gains in fossil fuels and
energy storage technologies including batteries and fuel
cells.
This multi-disciplinary volume presents information on the state-of-the-art in the sustainable development technologies and tactics. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable development will be of keen interest to engineers, students, practitioners, scientists and researchers concerned with sustainability. Problem statements, projections, new concepts, models, experiments, measurements and simulations from not only engineering and science, but disciplines as diverse as ecology, education, economics and information technology are included, in order to create a truly holistic vision of the sustainable development field. The contributions feature coverage of topics including green buildings, exergy analysis, clean carbon technologies, waste management, energy conservation, environmental remediation, energy security and sustainable development policy.
This book provides high-quality research results and proposes future priorities for more sustainable development and energy security. It covers a broad range of topics on atmospheric changes, climate change impacts, climate change modeling and simulations, energy and environment policies, energy resources and conversion technologies, renewables, emission reduction and abatement, waste management, ecosystems and biodiversity, and sustainable development. Gathering selected papers from the 7th Global Conference on Global Warming (GCGW2018), held in Izmir, Turkey on June 24-28, 2018, it: Offers comprehensive coverage of the development of systems taking into account climate change, renewables, waste management, chemical aspects, energy and environmental issues, along with recent developments and cutting-edge information Highlights recent advances in the area of energy and environment, and the debate on and shaping of future directions and priorities for a better environment, sustainable development and energy security Provides a number of practical applications and case studies Is written in an easy-to-follow style, moving from the basics to advanced systems. Given its scope, the book offers a valuable resource for readers in academia and industry alike, and can be used at the graduate level or as a reference text for professors, researchers and engineers.
This book provides a detailed analysis of absorption refrigeration systems, covering single effect to multi-effect systems and their applications. Both the first and second laws of thermodynamics are discussed in relation to refrigeration systems to show how system performance differs from one law to another. Comparative energy and exergy analyses and assessments of single effect, double effect, triple effect and quadruple effect absorption refrigeration system are performed to illustrate the impact of an increase in the number of effects on system performance. In particular, the second law (exergy) formulation for absorption refrigeration systems, rarely discussed by other works, is covered in detail. Integrated Absorption Refrigeration Systems will help researchers, students and instructors in the formulation of energy and exergy efficiency equations for absorption refrigeration systems.
This book gathers an in-depth collection of 45 selected papers presented at the Global Conference on Global Warming 2014 in Beijing, China, covering a broad variety of topics from the main principles of thermodynamics and their role in design, analysis, and the improvements in performance of energy systems to the potential impact of global warming on human health and wellbeing. Given energy production's role in contributing to global warming and climate change, this work provides solutions to global warming from the point of view of energy. Incorporating multi-disciplinary expertise and approaches, it provides a platform for the analysis of new developments in the area of global warming and climate change, as well as potential energy solutions including renewable energy, energy efficiency, energy storage, hydrogen production, CO2 capture and environmental impact assessment. The research and analysis presented herein will benefit international scientists, researchers, engineers, policymakers and all others with an interest in global warming and its potential solutions.
The concept of sustainable development was first introduced by the Brundtland Commission almost 20 years ago and has received increased attention during the past decade. It is now an essential part of any energy activities. This is a research-based textbook which can be used by senior undergraduate students, graduate students, engineers, practitioners, scientists, researchers in the area of sustainable energy systems and aimed to address some key pillars: better efficiency, better cost effectiveness, better use of energy resources, better environment, better energy security, and better sustainable development. It also includes some cutting-edge topics, such hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools (exergy, constructal theory, etc.) for design, analysis and performance improvement.
With the resurgence of nuclear power around the world, and the increasingly important role of hydrogen as a clean energy carrier, the utilization of nuclear energy for large-scale hydrogen production will have a key role in a sustainable energy future. Co-generation of both electricity and hydrogen from nuclear plants will become increasingly attractive. It enables load leveling together with renewable energy and storage of electricity in the form of hydrogen, when electricity prices and demand are lowest at off-peak hours of nuclear plants, such as overnight. "Hydrogen Production from Nuclear Energy "provides an overview of the latest developments and methods of nuclear based hydrogen production, including electrolysis and thermochemical cycles. Particular focus is given to thermochemical water splitting by the copper-chlorine and sulphur-based cycles. Cycle configurations, equipment design, modeling and implementation issues are presented and discussed. The book provides the reader with an overview of the key enabling technologies towards the design and industrialization of hydrogen plants that are co-located and linked with nuclear plants in the future. The book includes illustrations of technology developments, tables that summarize key features and results, overviews of recent advances and new methods of nuclear hydrogen production. The latest results from leading authorities in the fields will be presented, including efficiencies, costs, equipment design, and modeling.
This book will assess and compare several options for ammonia co-fueling of diesel locomotives with integrated heat recovery, multigeneration (including on-board hydrogen fuel production from ammonia), and emission reduction subsystems from energy, exergy, and environmental perspectives. Economic considerations will be presented to compare the cost of the proposed systems for different scenarios such as carbon-tax rates, diesel fuel cost and ammonia cost. Fossil fuel consumption and the associated negative environmental impact of their combustion is a significant global concern that requires effective, practical, and sustainable solutions. From a Canadian perspective, the Transportation Sector contributes more than 25% of national greenhouse gas emissions due to fossil fuel combustion, largely due to road vehicles (cars, light and heavy duty trucks). This is a complex and critical challenge to address, particularly in urban areas with high population density. There is a need to develop alternative energy solutions for mass passenger and freight transportation systems that will reduce both the traffic-volume of road vehicles as well as the emissions from the mass transportation systems. The book will be helpful to students in senior-level undergraduate and graduate level courses related to energy, thermodynamics, thermal sciences, combustion, HVAC&R, etc. The quantitative comparative assessment of such alternative energy systems provided by this book will be useful for researchers and professionals interested sustainable development.
Porous and Complex Flow Structures in Modern Technologies represents a new approach to the field, considering the fundamentals of porous media in terms of the key roles played by these materials in modern technology. Intended as a text for advanced undergraduates and as a reference for practicing engineers, the book uses the physics of flows in porous materials to tie together a wide variety of important issues from such fields as biomedical engineering, energy conversion, civil engineering, electronics, chemical engineering, and environmental engineering. Thus, for example, flows of water and oil through porous ground play a central role in energy exploration and recovery (oil wells, geothermal fluids), energy conversion (effluents from refineries and power plants), and environmental engineering (leachates from waste repositories). Similarly, the demands of miniaturization in electronics and in biomedical applications are driving research into the flow of heat and fluids through small-scale porous media (heat exchangers, filters, gas exchangers). Filters, catalytic converters, the drying of stored grains, and a myriad of other applications involve flows through porous media. By providing a unified theoretical framework that includes not only the traditional homogeneous and isotropic media but also models in which the assumptions of representative elemental volumes or global thermal equilibrium fail, the book provides practicing engineers the tools they need to analyze complex situations that arise in practice. This volume includes examples, solved problems and an extensive glossary of symbols.
Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management.
Global Warming: Engineering Solutions goes beyond the discussion of what global warming is, and offers complete concrete solutions that can be used to help prevent global warming. Innovative engineering solutions are needed to reduce the effects of global warming. Discussed here are proposed engineering solutions for reducing global warming resulting from carbon dioxide pollution, poor energy and environment policies and emission pollution. Solutions discussed include but are not limited to: energy conversion technologies and their advantages, energy management and conservation, energy saving and energy security, renewable and sustainable energy technologies, emission reduction, sustainable development; pollution control and measures, policy development, global energy stability and sustainability.
Exergy: Energy, Environment and Sustainable Development, Third Edition provides a systematic overview of new and developed systems, new practical examples, problems and case studies on several key topics ranging from the basics of thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications. With an ancillary online package and solutions manual, this reference connects exergy with three essential areas in terms of energy, environment and sustainable development. As such, it is a thorough reference for professionals who are solving problems related to design, analysis, modeling and assessment.
Thermal Management of Electric Vehicle Battery Systems provides a thorough examination of various conventional and cutting edge electric vehicle (EV) battery thermal management systems (including phase change material) that are currently used in the industry as well as being proposed for future EV batteries. It covers how to select the right thermal management design, configuration and parameters for the users battery chemistry, applications and operating conditions, and provides guidance on the setup, instrumentation and operation of their thermal management systems (TMS) in the most efficient and effective manner. This book provides the reader with the necessary information to develop a capable battery TMS that can keep the cells operating within the ideal operating temperature ranges and uniformities, while minimizing the associated energy consumption, cost and environmental impact. The procedures used are explained step-by-step, and generic and widely used parameters are utilized as much as possible to enable the reader to incorporate the conducted analyses to the systems they are working on. Also included are comprehensive thermodynamic modelling and analyses of TMSs as well as databanks of component costs and environmental impacts, which can be useful for providing new ideas on improving vehicle designs. Key features: * Discusses traditional and cutting edge technologies as well as research directions * Covers thermal management systems and their selection for different vehicles and applications * Includes case studies and practical examples from the industry * Covers thermodynamic analyses and assessment methods, including those based on energy and exergy, as well as exergoeconomic, exergoenvironmental and enviroeconomic techniques * Accompanied by a website hosting codes, models, and economic and environmental databases as well as various related information Thermal Management of Electric Vehicle Battery Systems is a unique book on electric vehicle thermal management systems for researchers and practitioners in industry, and is also a suitable textbook for senior-level undergraduate and graduate courses.
This book provides a detailed analysis of absorption refrigeration systems, covering single effect to multi-effect systems and their applications. Both the first and second laws of thermodynamics are discussed in relation to refrigeration systems to show how system performance differs from one law to another. Comparative energy and exergy analyses and assessments of single effect, double effect, triple effect and quadruple effect absorption refrigeration system are performed to illustrate the impact of an increase in the number of effects on system performance. In particular, the second law (exergy) formulation for absorption refrigeration systems, rarely discussed by other works, is covered in detail. Integrated Absorption Refrigeration Systems will help researchers, students and instructors in the formulation of energy and exergy efficiency equations for absorption refrigeration systems.
This book gathers an in-depth collection of 45 selected papers presented at the Global Conference on Global Warming 2014 in Beijing, China, covering a broad variety of topics from the main principles of thermodynamics and their role in design, analysis, and the improvements in performance of energy systems to the potential impact of global warming on human health and wellbeing. Given energy production's role in contributing to global warming and climate change, this work provides solutions to global warming from the point of view of energy. Incorporating multi-disciplinary expertise and approaches, it provides a platform for the analysis of new developments in the area of global warming and climate change, as well as potential energy solutions including renewable energy, energy efficiency, energy storage, hydrogen production, CO2 capture and environmental impact assessment. The research and analysis presented herein will benefit international scientists, researchers, engineers, policymakers and all others with an interest in global warming and its potential solutions.
This book will assess and compare several options for ammonia co-fueling of diesel locomotives with integrated heat recovery, multigeneration (including on-board hydrogen fuel production from ammonia), and emission reduction subsystems from energy, exergy, and environmental perspectives. Economic considerations will be presented to compare the cost of the proposed systems for different scenarios such as carbon-tax rates, diesel fuel cost and ammonia cost. Fossil fuel consumption and the associated negative environmental impact of their combustion is a significant global concern that requires effective, practical, and sustainable solutions. From a Canadian perspective, the Transportation Sector contributes more than 25% of national greenhouse gas emissions due to fossil fuel combustion, largely due to road vehicles (cars, light and heavy duty trucks). This is a complex and critical challenge to address, particularly in urban areas with high population density. There is a need to develop alternative energy solutions for mass passenger and freight transportation systems that will reduce both the traffic-volume of road vehicles as well as the emissions from the mass transportation systems. The book will be helpful to students in senior-level undergraduate and graduate level courses related to energy, thermodynamics, thermal sciences, combustion, HVAC&R, etc. The quantitative comparative assessment of such alternative energy systems provided by this book will be useful for researchers and professionals interested sustainable development.
This multi-disciplinary volume presents information on the state-of-the-art in sustainable energy technologies key to tackling the world's energy challenges and achieving environmentally benign solutions. Its unique amalgamation of the latest technical information, research findings and examples of successfully applied new developments in the area of sustainable energy will be of keen interest to engineers, students, practitioners, scientists and researchers working with sustainable energy technologies. Problem statements, projections, new concepts, models, experiments, measurements and simulations from not only engineering and science, but disciplines as diverse as ecology, education, economics and information technology are included, in order to create a truly holistic vision of the sustainable energy field. The contributions feature coverage of topics including solar and wind energy, biomass and biofuels, waste-to-energy, renewable fuels, geothermal and hydrogen power, efficiency gains in fossil fuels and energy storage technologies including batteries and fuel cells.
The concept of sustainable development was first introduced by the Brundtland Commission almost 20 years ago and has received increased attention during the past decade. It is now an essential part of any energy activities. This is a research-based textbook which can be used by senior undergraduate students, graduate students, engineers, practitioners, scientists, researchers in the area of sustainable energy systems and aimed to address some key pillars: better efficiency, better cost effectiveness, better use of energy resources, better environment, better energy security, and better sustainable development. It also includes some cutting-edge topics, such hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools (exergy, constructal theory, etc.) for design, analysis and performance improvement.
Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy analysis to these systems.
With the resurgence of nuclear power around the world, and the increasingly important role of hydrogen as a clean energy carrier, the utilization of nuclear energy for large-scale hydrogen production will have a key role in a sustainable energy future. Co-generation of both electricity and hydrogen from nuclear plants will become increasingly attractive. It enables load leveling together with renewable energy and storage of electricity in the form of hydrogen, when electricity prices and demand are lowest at off-peak hours of nuclear plants, such as overnight. Hydrogen Production from Nuclear Energy provides an overview of the latest developments and methods of nuclear based hydrogen production, including electrolysis and thermochemical cycles. Particular focus is given to thermochemical water splitting by the copper-chlorine and sulphur-based cycles. Cycle configurations, equipment design, modeling and implementation issues are presented and discussed. The book provides the reader with an overview of the key enabling technologies towards the design and industrialization of hydrogen plants that are co-located and linked with nuclear plants in the future. The book includes illustrations of technology developments, tables that summarize key features and results, overviews of recent advances and new methods of nuclear hydrogen production. The latest results from leading authorities in the fields will be presented, including efficiencies, costs, equipment design, and modeling.
"Advanced Power Generation Systems" examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system
provided by globally recognized author Dr. Ibrahim Dincer will
inform effective and efficient design choices, while emphasizing
the pivotal role of new methodologies and models for performance
assessment of existing systems. This unique resource gathers
information from thermodynamics, fluid mechanics, heat transfer,
and energy system design to provide a single-source guide to
solving practical power engineering problems.
This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding of second law (exergy) efficiencies for various systems. It may serve as a reference book to the researchers in energy field. The definitions and concepts developed in the book will be explained through illustrative examples.
Efficiency is one of the most frequently used terms in thermodynamics, and it indicates how well an energy conversion or process is accomplished. Efficiency is also one of the most frequently misused terms in thermodynamics and is often a source of misunderstanding. This is because efficiency is often used without being properly defined first. This book intends to provide a comprehensive evaluation of various efficiencies used for energy transfer and conversion systems including steady-flow energy devices (turbines, compressors, pumps, nozzles, heat exchangers, etc.), various power plants, cogeneration plants, and refrigeration systems. The book will cover first-law (energy based) and second-law (exergy based) efficiencies and provide a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book will be particularly useful for a clear understanding of second law (exergy) efficiencies for various systems. It may serve as a reference book to the researchers in energy field. The definitions and concepts developed in the book will be explained through illustrative examples. |
You may like...
Computational Intelligence in Data…
Vallidevi Krishnamurthy, Suresh Jaganathan, …
Hardcover
R2,561
Discovery Miles 25 610
Applications of Advanced Computing in…
Rajesh Kumar, R. K. Dohare, …
Hardcover
R4,276
Discovery Miles 42 760
Deep Neural Evolution - Deep Learning…
Hitoshi Iba, Nasimul Noman
Hardcover
R5,024
Discovery Miles 50 240
Get Your Will Right - A Guide For…
Chris Sloane, Wendy Mangin
Paperback
Multi-faceted Deep Learning - Models and…
Jenny Benois-Pineau, Akka Zemmari
Hardcover
R4,707
Discovery Miles 47 070
Machine Learning with Quantum Computers
Maria Schuld, Francesco Petruccione
Hardcover
R3,548
Discovery Miles 35 480
|