Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 24 of 24 matches in All Departments
This book gathers contributions written by Daniel Alpay's friends and collaborators. Several of the papers were presented at the International Conference on Complex Analysis and Operator Theory held in honor of Professor Alpay's 60th birthday at Chapman University in November 2016. The main topics covered are complex analysis, operator theory and other areas of mathematics close to Alpay's primary research interests. The book is recommended for mathematicians from the graduate level on, working in various areas of mathematical analysis, operator theory, infinite dimensional analysis, linear systems, and stochastic processes.
Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics.
This book presents English translations of Michele Sce's most important works, originally written in Italian during the period 1955-1973, on hypercomplex analysis and algebras of hypercomplex numbers. Despite their importance, these works are not very well known in the mathematics community because of the language they were published in. Possibly the most remarkable instance is the so-called Fueter-Sce mapping theorem, which is a cornerstone of modern hypercomplex analysis, and is not yet understood in its full generality. This volume is dedicated to revealing and describing the framework Sce worked in, at an exciting time when the various generalizations of complex analysis in one variable were still in their infancy. In addition to faithfully translating Sce's papers, the authors discuss their significance and explain their connections to contemporary research in hypercomplex analysis. They also discuss many concrete examples that can serve as a basis for further research. The vast majority of the results presented here will be new to readers, allowing them to finally access the original sources with the benefit of comments from fellow mathematicians active in the field of hypercomplex analysis. As such, the book offers not only an important chapter in the history of hypercomplex analysis, but also a roadmap for further exciting research in the field.
Leon Ehrenpreis has been one of the leading mathematicians in the twentieth century. His contributions to the theory of partial differential equations were part of the golden era of PDEs, and led him to what is maybe his most important contribution, the Fundamental Principle, which he announced in 1960, and fully demonstrated in 1970. His most recent work, on the other hand, focused on a novel and far reaching understanding of the Radon transform, and offered new insights in integral geometry. Leon Ehrenpreis died in 2010, and this volume collects writings in his honor by a cadre of distinguished mathematicians, many of which were his collaborators.
This book contains a selection of papers presented at the session "Quaternionic and Clifford Analysis" at the 10th ISAAC Congress held in Macau in August 2015. The covered topics represent the state-of-the-art as well as new trends in hypercomplex analysis and its applications.
The purpose of the volume is to bring forward recent trends of research in hypercomplex analysis. The list of contributors includes first rate mathematicians and young researchers working on several different aspects in quaternionic and Clifford analysis. Besides original research papers, there are papers providing the state-of-the-art of a specific topic, sometimes containing interdisciplinary fields. The intended audience includes researchers, PhD students, postgraduate students who are interested in the field and in possible connection between hypercomplex analysis and other disciplines, including mathematical analysis, mathematical physics, algebra.
* Original articles and survey articles in honor of the sixtieth birthday of Carlos A. Berenstein reflect his diverse research interests from interpolation to residue theory to deconvolution and its applications to issues ranging from optics to the study of blood flow * Contains both theoretical papers in harmonic and complex analysis, as well as more applied work in signal processing * Top-notch contributors in their respective fields
* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics
This book features a collection of papers by plenary, semi-plenary and invited contributors at IWOTA2021, held at Chapman University in hybrid format in August 2021. The topics span areas of current research in operator theory, mathematical physics, and complex analysis.
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis. The third part represents the core of the book and explores quaternionic Schur analysis and its various applications. The book includes previously unpublished results and provides the basis for new directions of research.
This book presents English translations of Michele Sce's most important works, originally written in Italian during the period 1955-1973, on hypercomplex analysis and algebras of hypercomplex numbers. Despite their importance, these works are not very well known in the mathematics community because of the language they were published in. Possibly the most remarkable instance is the so-called Fueter-Sce mapping theorem, which is a cornerstone of modern hypercomplex analysis, and is not yet understood in its full generality. This volume is dedicated to revealing and describing the framework Sce worked in, at an exciting time when the various generalizations of complex analysis in one variable were still in their infancy. In addition to faithfully translating Sce's papers, the authors discuss their significance and explain their connections to contemporary research in hypercomplex analysis. They also discuss many concrete examples that can serve as a basis for further research. The vast majority of the results presented here will be new to readers, allowing them to finally access the original sources with the benefit of comments from fellow mathematicians active in the field of hypercomplex analysis. As such, the book offers not only an important chapter in the history of hypercomplex analysis, but also a roadmap for further exciting research in the field.
This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis. The third part represents the core of the book and explores quaternionic Schur analysis and its various applications. The book includes previously unpublished results and provides the basis for new directions of research.
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.
This book contains a selection of papers presented at the session "Quaternionic and Clifford Analysis" at the 10th ISAAC Congress held in Macau in August 2015. The covered topics represent the state-of-the-art as well as new trends in hypercomplex analysis and its applications.
"This book presents a functional calculus for "n"-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions."
Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics."
Leon Ehrenpreis has been one of the leading mathematicians in the twentieth century. His contributions to the theory of partial differential equations were part of the golden era of PDEs, and led him to what is maybe his most important contribution, the Fundamental Principle, which he announced in 1960, and fully demonstrated in 1970. His most recent work, on the other hand, focused on a novel and far reaching understanding of the Radon transform, and offered new insights in integral geometry. Leon Ehrenpreis died in 2010, and this volume collects writings in his honor by a cadre of distinguished mathematicians, many of which were his collaborators.
"This book presents a functional calculus for "n"-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions."
Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics."
The purpose of the volume is to bring forward recent trends of research in hypercomplex analysis. The list of contributors includes first rate mathematicians and young researchers working on several different aspects in quaternionic and Clifford analysis. Besides original research papers, there are papers providing the state-of-the-art of a specific topic, sometimes containing interdisciplinary fields. The intended audience includes researchers, PhD students, postgraduate students who are interested in the field and in possible connection between hypercomplex analysis and other disciplines, including mathematical analysis, mathematical physics, algebra.
* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics
This volume contains the contributions of the participants of the 13th International ISAAC Congress 2021, held in Ghent, Belgium. The papers, written by respected international experts, address recent results in mathematics, with a special focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on current research in mathematical analysis and its various interdisciplinary applications.
This volume contains the contributions of the participants of the 12th ISAAC congress which was held at the University of Aveiro, Portugal, from July 29 to August 3, 2019. These contributions originate from the following sessions: Applications of dynamical systems theory in biology, Complex Analysis and Partial Differential Equations, Complex Geometry, Complex Variables and Potential Theory, Constructive Methods in the Theory of Composite and Porous Media, Function Spaces and Applications, Generalized Functions and Applications, Geometric & Regularity Properties of Solutions to Elliptic and Parabolic PDEs, Geometries Defined by Differential Forms, Partial Differential Equations on Curved Spacetimes, Partial Differential Equations with Nonstandard Growth, Quaternionic and Clifford Analysis, Recent Progress in Evolution Equations, Wavelet theory and its Related Topics.
This book presents the extensions to the quaternionic setting of some of the main approximation results in complex analysis. It also includes the main inequalities regarding the behavior of the derivatives of polynomials with quaternionic cofficients. With some few exceptions, all the material in this book belongs to recent research of the authors on the approximation of slice regular functions of a quaternionic variable. The book is addressed to researchers in various areas of mathematical analysis, in particular hypercomplex analysis, and approximation theory. It is accessible to graduate students and suitable for graduate courses in the above framework.
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|