![]() |
![]() |
Your cart is empty |
||
Showing 1 - 5 of 5 matches in All Departments
Solar-Terrestrial Physics: The Study of Mankind's Newest Frontier Solar-Terrestrial Physics (STP) has been around for 100 years. However, it only became known as a scientific discipline under that name when the physical domain studied by STP became accessible to in situ observation and measurement by man or man-made instruments. Indeed, it was STP that provided the initial scientific driving force for the launching of man-made devices into extra-terrestrial space during the International Geophysical Year - aided of course by the genetically engrained drive of humans to expand their frontiers of knowledge, influence and dominance. We may define STP as the discipline dealing with the variable components of solar corpuscular and electromagnetic emissions, the physical processes governing their sources and their propagation through interplanetary space, and the physical-chemical processes related to their interaction with the Earth and other bodies in interplanetary space. Much of STP deals with fully-or partially-ionized gas flows and related energy, momentum and mass transfer in what now appears as one single system made up of distinct but strongly interacting parts, reaching from the photosphere out to the confines of the heliopause, engulfing planets and other solar system bodies, and dipping deep into 6 the Earth's atmosphere.
Since the discovery of geomagnetically trapped radiation by Van Allen in 1958, an impressive amount of experimental information on the earth's particle and field environment has nourished research work for scores of scientists and thesis work for their students. This quest has challenged space-age technology to produce better and more sophisticated instru ments and has challenged the international scientific community and governments to establish more, and more effective, cooperative programs of research and information exchange. As a result, an orderly picture of the principal physical mechanisms governing the earth's radiation environment is beginning to emerge. The interest in this topic has reached far beyond the domain of geo physics. Indeed, we find trapped radiation elsewhere in the universe: Jupiter's radiation belts, particle trapping in sunspot magnetic fields, cosmic rays confined in interstellar fields and, possibly, ultra-high-energy particles trapped in the magnetic fields of rotating neutron stars. There is abundant technical and scientific literature available on Van Allen radiation; comprehensive reviews are published regularly in journals* or have been collected in book form**, and books have been written on the subject***. The aim of this monograph is to complement the existing literature with a concise discussion of the basic dynamical processes that control the earth's radiation belts. It is mainly intended to help a graduate student or a researcher new to this field to understand the underlying physics and to provide him with guidelines for quantita tive, numerical applications of the theory."
Solar-Terrestrial Physics: The Study of Mankind's Newest Frontier Solar-Terrestrial Physics (STP) has been around for 100 years. However, it only became known as a scientific discipline under that name when the physical domain studied by STP became accessible to in situ observation and measurement by man or man-made instruments. Indeed, it was STP that provided the initial scientific driving force for the launching of man-made devices into extra-terrestrial space during the International Geophysical Year - aided of course by the genetically engrained drive of humans to expand their frontiers of knowledge, influence and dominance. We may define STP as the discipline dealing with the variable components of solar corpuscular and electromagnetic emissions, the physical processes governing their sources and their propagation through interplanetary space, and the physical-chemical processes related to their interaction with the Earth and other bodies in interplanetary space. Much of STP deals with fully-or partially-ionized gas flows and related energy, momentum and mass transfer in what now appears as one single system made up of distinct but strongly interacting parts, reaching from the photosphere out to the confines of the heliopause, engulfing planets and other solar system bodies, and dipping deep into 6 the Earth's atmosphere.
|
![]() ![]() You may like...
Geomorphic Approaches to Integrated…
Paul F Hudson, Hans Middelkoop
Hardcover
Impacts of Megaconferences on the Water…
Asit K Biswas, Cecilia Tortajada
Hardcover
R2,903
Discovery Miles 29 030
Drug Policies and the Politics of Drugs…
Beatriz Caiuby Labate, Clancy Cavnar, …
Hardcover
R5,654
Discovery Miles 56 540
|