Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
Published as a companion to Volume 12, the current volume presents the latest advances in electron paramagnetic resonance of iron proteins, metalloproteins, and free radicals. The book features a diskette containing programs for iron ERP spectral simulation and ENDOR analyses.
NMR Methodology for Paramagnetic Proteins; G.N. La Mar, J.S. de Ropp. Nuclear Relaxation in Paramagnetic Metalloproteins; L. Banci. Paramagnetic Relaxation of Water Protons; C.C. Lester, R.G. Bryant. Proton NMR Spectroscopy of Model Hemes; F.A. Walker, U. Simonis. Proton NMR Studies of Selected Paramagnetic Heme Proteins; J.D. Satterlee, et al. Heteronuclear Magnetic Resonance; J. Mispelter, et al. NMR of Polymetallic Systems in Proteins; C. Luchinat, S. Ciurli. Index.
In vivo nuclear magnetic and electron spin resonance spectroscopy is concerned, inter alia, with the noninvasive observation of metabolic changes in living systems, including animals and humans. Typically, the physiologi cal (or pathological) state of an organ or tissue is monitored. This multi faceted approach was developed during the 1980s. It is still a research technique, but will undoubtedly become a clinical tool. We are proud to present this volume (the eleventh of our series) in which some of the pioneers in this area summarize their contributions and review related literature. Bolinger and Lenkinski describe a variety of localization methods suitable for clinical applications of NMR spectroscopy. Schleich, Caines, and Rydzewski summarize their contributions to approaches involving off-resonance rotating frame relaxation and critically compare these with other NMR techniques that may yield similar information. Chang and James outline their approach and share their experience with the technical aspects 1 31 of H and P NMR spectroscopy and spatially localized spectroscopy in studies of brain ischemia. Sodium plays an important role in living systems, a key aspect being the large gradient between intra- and extracellular concentrations of sodium that is maintained by a variety of transport mechanisms. Miller and Elgavish give us a comprehensive review of an important research tool in this 23 area- Na NMR spectroscopy as aided by shift reagents."
In the past ten years or so, biological magnetic resonance (NMR and ESR) has fully blossomed and become highly branched. In the 1970s and earlier, a practitioner in biological magnetic resonance was using virtually all of the available methods suitable for his research, with the latter covering a diverse range of systems. Today, the focus of an individual laboratory is actually much narrower, with respect to both the methods and the systems investigated. Thus, those who investigate protein structure by multi dimensional NMR spectroscopy do not usually engage in studies involving in vivo spectroscopy. The conferences on biological magnetic resonance now have parallel sessions rather than the single, common session of earlier days. Moreover, topical meetings are becoming more frequent. Therefore, this and future volumes of our series will also focus on specific topical areas. We are proud to present Volume 10 of our series. It focuses on Carbohydrates and Nucleic Acids. In an extensive chapter, Kamerling and Vliegenthart use oligosaccharide-alditols released from mucin-type- glycoproteins to illustrate the power of proton NMR spectroscopy in the determination of carbohydrate structure. Wemmer gives a detailed coverage of the arsenal of modern NMR methods now available for structural studies of nucleic acids. Forthcoming volumes will focus on In Vivo Spectroscopy and Protein Structure. As always, we are anxious to get feedback from the readers and hear their comments and suggestions. Lawrence J."
We take great pleasure in presenting Vol. IV of Biological Magnetic Resonance, a series that continues to give us pride. In this volume, we are pleased to have our first chapter on the applications of ESR to problems in medicine, written by Butterfield. Armitage and Otvos describe their extensive Cd-l13 NMR study in a chapter that should delight the spectroscopists as well as the biochemists, since the systems investigated have not yet been modeled. Kaptein presents an eloquent exposition of the principles and applications to biological systems of the photo-CIDNP technique, to which he has made pioneering contributions. Perkins tells everything one always wanted to know about the applications of ring current calculations in structural studies of biological macromolecules. Our philosophy has been, and continues to be, to present topics of current interest by authors who are active in their field, while maintaining the inter national flavor of the series. Ideally, the coverage of each topic should approach that found both in a textbook and in a reference book, rather than being a mere literature review. We are grateful to the authors for their cooperation in this respect. We continue to solicit the comments and suggestions of our readers and our colleagues, and thank those who have already responded, including the reviewers in the periodicals. Lawrence J. Berliner Jacques Reuben ix Contents Chapter 1 Spin Labeling in Disease D. Allan Butterfield 1. Introduction ...................................... . 2. Membrane Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . 2.1. General Principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2. The Erythrocyte Membrane. . . . . . . . . . . . . . . . . . . 4 . . . . .
Published as a companion to Volume 12, the current volume presents the latest advances in electron paramagnetic resonance of iron proteins, metalloproteins, and free radicals. The book features a diskette containing programs for iron ERP spectral simulation and ENDOR analyses.
In vivo nuclear magnetic and electron spin resonance spectroscopy is concerned, inter alia, with the noninvasive observation of metabolic changes in living systems, including animals and humans. Typically, the physiologi cal (or pathological) state of an organ or tissue is monitored. This multi faceted approach was developed during the 1980s. It is still a research technique, but will undoubtedly become a clinical tool. We are proud to present this volume (the eleventh of our series) in which some of the pioneers in this area summarize their contributions and review related literature. Bolinger and Lenkinski describe a variety of localization methods suitable for clinical applications of NMR spectroscopy. Schleich, Caines, and Rydzewski summarize their contributions to approaches involving off-resonance rotating frame relaxation and critically compare these with other NMR techniques that may yield similar information. Chang and James outline their approach and share their experience with the technical aspects 1 31 of H and P NMR spectroscopy and spatially localized spectroscopy in studies of brain ischemia. Sodium plays an important role in living systems, a key aspect being the large gradient between intra- and extracellular concentrations of sodium that is maintained by a variety of transport mechanisms. Miller and Elgavish give us a comprehensive review of an important research tool in this 23 area- Na NMR spectroscopy as aided by shift reagents.
In the past ten years or so, biological magnetic resonance (NMR and ESR) has fully blossomed and become highly branched. In the 1970s and earlier, a practitioner in biological magnetic resonance was using virtually all of the available methods suitable for his research, with the latter covering a diverse range of systems. Today, the focus of an individual laboratory is actually much narrower, with respect to both the methods and the systems investigated. Thus, those who investigate protein structure by multi dimensional NMR spectroscopy do not usually engage in studies involving in vivo spectroscopy. The conferences on biological magnetic resonance now have parallel sessions rather than the single, common session of earlier days. Moreover, topical meetings are becoming more frequent. Therefore, this and future volumes of our series will also focus on specific topical areas. We are proud to present Volume 10 of our series. It focuses on Carbohydrates and Nucleic Acids. In an extensive chapter, Kamerling and Vliegenthart use oligosaccharide-alditols released from mucin-type- glycoproteins to illustrate the power of proton NMR spectroscopy in the determination of carbohydrate structure. Wemmer gives a detailed coverage of the arsenal of modern NMR methods now available for structural studies of nucleic acids. Forthcoming volumes will focus on In Vivo Spectroscopy and Protein Structure. As always, we are anxious to get feedback from the readers and hear their comments and suggestions. Lawrence J.
We are pleased to present Volume 9 of our highly successful series, which now celebrates 12 years of providing the magnetic resonance community with topical, authoritative chapters on new aspects of biological magnetic resonance. As always, we try to present a diversity of topic coverage in each volume, ranging from applications of in vivo magnetic resonance to more fundamental aspects of electron spin resonance and nuclear magnetic resonance. Philip Yeagle presents an eagerly awaited chapter on 31p NMR studies of membranes and membrane protein interactions. Alan Marshall has con tributed two chapters to the volume: one, with Jiejun Wu, describes magnetic resonance studies of 5S-RNA as probes of its structure and conformation; the secon"
The first of a two volume set, Volume 12 provides a long-awaited compilation of NMR theory to paramagnetic molecules. International experts report the latest developments in NMR methodology as applied to strongly relaxed and shifted resonances, detail the theoretical aspects of paramagnetic shift and relaxation, and discuss the interpretive bases of these molecular properties in relation to the structure and function of various paramagnetic molecules.
We are again proud to present an excellent volume of contemporary topics in NMR and EPR to the biological community. The philosophy behind the volume and the presentation of each chapter remains at the high level reflected in our earlier volumes: to be current, pedagogical, and critical. The first chapters, as always, address a subject related to in-vivo biology. Gabby Elgavish addresses NMR spectroscopy of the intact heart. lain Campbell and colleagues present a state-of-the-art description of NMR methods for probing enzyme kinetics in intact cells and tissues. Klaus Mobius and Wolfgang Lubitz have produced a thorough review of the principles and applications of ENDOR spectroscopy in photobiology and biochemistry including discussions of liquid and solid state ENDOR as well as CIDEP-enhanced ENDOR. The final chapter by Hans Vogel and Sture Forsen addresses a contemporary problem in inorganic biochemistry, namely cation binding to calcium binding proteins. We are pleased to announce that a special forthcoming volume will be devoted entirely to the subject of "Spin Labeling: Theory and Applications (3rd compendium)." A substantial degree of progress has occurred in this important area of ESR in biology since the last treatise on the subject in 1979. Lastly, we acknowledge our colleagues in the field who continue to support this excellent series both as subscribers and contributors. We pledge to continue servicing the community as long as the need exists.
We present this special topics volume on an area which has not received thorough coverage for over 12 years. Spin Labeling: Theory and Applications represents a complete update on new theoretical aspects and applications of the spin-label method. In the "line-shape theory" sections, we are especially pleased to include an IBM-compatible diskette supplied by David Schneider and Jack Freed which contains fast, accurate, ready-to-use software for slow-motion simulations. Barney Bales discusses inhomogeneous broadening phenomena in detail. Several developments in techniques and interpretation in saturation transfer spectroscopy have appeared since the publica tion of Spin Labeling II: Theory and Applications (L. J. Berliner, ed., Academic Press, 1979). We have included an up-to-date chapter on spin-label applications by M. A. Hemminga and P. A. de Jager. By incorporating 15N and deuterium into nitroxide spin labels, several unique advantages are derived in line-shape analysis. Albert Beth and Bruce Robinson have contributed a detailed chapter on the analysis of these labels in the slow-motion regime while Jane Park and Wolfgang Trommer present the advantages for specific biochemical examples in our "applications" section. Derek Marsh's contri bution on spin-label spectral analysis may be regarded as a summary chapter which touches on several of the detailed spectral analysis methods described in the earlier chapters."
We are proud to present Volume 3 of Biological Magnetic Resonance, a series that has met with praise from the scientific community. This volume covers the new applications of various multiple irradia- tion techniques to the NMR of biomolecules; the chapter of Keller and Wuthrich describes much of the technique and its applications to hemo- proteins. The ESR of some hemoproteins in the single crystal is described by Chien and Dickinson, who also include discussions of techniques and methods for single-crystal ESR of paramagnetically intrinsic and spin- labeled protein crystals. Mims and Peisach describe the latest applications and results in electron spin echo spectroscopy of several metalloproteins. Two ESR spin probe techniques are reviewed. Chasteen describes the methods and applications of vanadyl(JV) to several systems. Ohnishi and Tokutomi describe studies of phase separations in mixed and model mem- branes by the nitroxide spin probe technique. We have been successful in continuing to provide topics that are timely and experimentally informative with a heavy emphasis on biolo- gically relevant applications. We thank our colleagues in the scientific com- munity for their suggestions on future coverage-we will remain receptive to future suggestions and comments on this series. A tentative topic list for forthcoming volumes is given on the following pages.
|
You may like...
|