Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
Tackle the Challenges of Parallel Programming in the Visual Effects Industry In Multithreading for Visual Effects, developers from DreamWorks Animation, Pixar, Side Effects, Intel, and AMD share their successes and failures in the messy real-world application area of production software. They provide practical advice on multithreading techniques and visual effects used in popular visual effects libraries (such as Bullet, OpenVDB, and OpenSubdiv), one of the industry's leading visual effects packages (Houdini), and proprietary animation systems. This information is valuable not just to those in the visual effects arena, but also to developers of high performance software looking to increase performance of their code. Diverse Solutions to Solve Performance Problems After an introductory chapter, each subsequent chapter presents a case study that illustrates how the authors used multithreading techniques to achieve better performance. The authors discuss the problems that occurred and explain how they solved them. The case studies encompass solutions for shaving milliseconds, solutions for optimizing longer running tasks, multithreading techniques for modern CPU architectures, and massive parallelism using GPUs. Some of the case studies include open source projects so you can try out these techniques for yourself and see how well they work.
"This book, now in is second edition, is the premier resource to learn SYCL 2020 and is the ONLY book you need to become part of this community." Erik Lindahl, GROMACS and Stockholm University Learn how to accelerate C++ programs using data parallelism and SYCL. This open access book enables C++ programmers to be at the forefront of this exciting and important development that is helping to push computing to new levels. This updated second edition is full of practical advice, detailed explanations, and code examples to illustrate key topics. SYCL enables access to parallel resources in modern accelerated heterogeneous systems. Now, a single C++ application can use any combination of devices–including GPUs, CPUs, FPGAs, and ASICs–that are suitable to the problems at hand. This book teaches data-parallel programming using C++ with SYCL and walks through everything needed to program accelerated systems. The book begins by introducing data parallelism and foundational topics for effective use of SYCL. Later chapters cover advanced topics, including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. All source code for the examples used in this book is freely available on GitHub. The examples are written in modern SYCL and are regularly updated to ensure compatibility with multiple compilers. What You Will Learn Accelerate C++ programs using data-parallel programming Use SYCL and C++ compilers that support SYCL Write portable code for accelerators that is vendor and device agnostic Optimize code to improve performance for specific accelerators Be poised to benefit as new accelerators appear from many vendors Who This Book Is For New data-parallel programming and computer programmers interested in data-parallel programming using C++ This is an open access book.
Intel Xeon Phi Processor High Performance Programming is an all-in-one source of information for programming the Second-Generation Intel Xeon Phi product family also called Knights Landing. The authors provide detailed and timely Knights Landingspecific details, programming advice, and real-world examples. The authors distill their years of Xeon Phi programming experience coupled with insights from many expert customers - Intel Field Engineers, Application Engineers, and Technical Consulting Engineers - to create this authoritative book on the essentials of programming for Intel Xeon Phi products. Intel (R) Xeon Phi (TM) Processor High-Performance Programming is useful even before you ever program a system with an Intel Xeon Phi processor. To help ensure that your applications run at maximum efficiency, the authors emphasize key techniques for programming any modern parallel computing system whether based on Intel Xeon processors, Intel Xeon Phi processors, or other high-performance microprocessors. Applying these techniques will generally increase your program performance on any system and prepare you better for Intel Xeon Phi processors.
This open access book is a modern guide for all C++ programmers to learn Threading Building Blocks (TBB). Written by TBB and parallel programming experts, this book reflects their collective decades of experience in developing and teaching parallel programming with TBB, offering their insights in an approachable manner. Throughout the book the authors present numerous examples and best practices to help you become an effective TBB programmer and leverage the power of parallel systems. Pro TBB starts with the basics, explaining parallel algorithms and C++'s built-in standard template library for parallelism. You'll learn the key concepts of managing memory, working with data structures and how to handle typical issues with synchronization. Later chapters apply these ideas to complex systems to explain performance tradeoffs, mapping common parallel patterns, controlling threads and overhead, and extending TBB to program heterogeneous systems or system-on-chips. What You'll Learn Use Threading Building Blocks to produce code that is portable, simple, scalable, and more understandable Review best practices for parallelizing computationally intensive tasks in your applications Integrate TBB with other threading packages Create scalable, high performance data-parallel programs Work with generic programming to write efficient algorithms Who This Book Is For C++ programmers learning to run applications on multicore systems, as well as C or C++ programmers without much experience with templates. No previous experience with parallel programming or multicore processors is required.
High Performance Parallelism Pearls Volume 2 offers another set of examples that demonstrate how to leverage parallelism. Similar to Volume 1, the techniques included here explain how to use processors and coprocessors with the same programming - illustrating the most effective ways to combine Xeon Phi coprocessors with Xeon and other multicore processors. The book includes examples of successful programming efforts, drawn from across industries and domains such as biomed, genetics, finance, manufacturing, imaging, and more. Each chapter in this edited work includes detailed explanations of the programming techniques used, while showing high performance results on both Intel Xeon Phi coprocessors and multicore processors. Learn from dozens of new examples and case studies illustrating "success stories" demonstrating not just the features of Xeon-powered systems, but also how to leverage parallelism across these heterogeneous systems.
Multi-core chips from Intel and AMD offer a dramatic boost in speed and responsiveness, and plenty of opportunities for multiprocessing on ordinary desktop computers. But they also present a challenge: More than ever, multithreading is a requirement for good performance. This guide explains how to maximize the benefits of these processors through a portable C++ library that works on Windows, Linux, Macintosh, and Unix systems. With it, you'll learn how to use Intel Threading Building Blocks (TBB) effectively for parallel programming -- without having to be a threading expert. Written by James Reinders, Chief Evangelist of Intel Software Products, and based on the experience of Intel's developers and customers, this book explains the key tasks in multithreading and how to accomplish them with TBB in a portable and robust manner. With plenty of examples and full reference material, the book lays out common patterns of uses, reveals the gotchas in TBB, and gives important guidelines for choosing among alternatives in order to get the best performance. You'll learn how Intel Threading Building Blocks: * Enables you to specify tasks instead of threads for better portability, easier programming, more understandable source code, and better performance and scalability in general * Focuses on the goal of parallelizing computationally intensive work to deliver high-level solutions * Is compatible with other threading packages, and doesn't force you to pick one package for your entire program * Emphasizes scalable, data-parallel programming, which allows program performance to increase as you add processors * Relies on generic programming, which enables you to write the best possible algorithms with the fewest constraints Any C++ programmer who wants to write an application to run on a multi-core system will benefit from this book. TBB is also very approachable for a C programmer or a C++ programmer without much experience with templates. Best of all, you don't need experience with parallel programming or multi-core processors to use this book.
High Performance Parallelism Pearls shows how to leverage parallelism on processors and coprocessors with the same programming - illustrating the most effective ways to better tap the computational potential of systems with Intel Xeon Phi coprocessors and Intel Xeon processors or other multicore processors. The book includes examples of successful programming efforts, drawn from across industries and domains such as chemistry, engineering, and environmental science. Each chapter in this edited work includes detailed explanations of the programming techniques used, while showing high performance results on both Intel Xeon Phi coprocessors and multicore processors. Learn from dozens of new examples and case studies illustrating "success stories" demonstrating not just the features of these powerful systems, but also how to leverage parallelism across these heterogeneous systems.
Programming is now parallel programming. Much as structured
programming revolutionized traditional serial programming decades
ago, a new kind of structured programming, based on patterns, is
relevant to parallel programming today. Parallel computing experts
and industry insiders Michael McCool, Arch Robison, and James
Reinders describe how to design and implement maintainable and
efficient parallel algorithms using a pattern-based approach. They
present both theory and practice, and give detailed concrete
examples using multiple programming models. Examples are primarily
given using two of the most popular and cutting edge programming
models for parallel programming: Threading Building Blocks, and
Cilk Plus. These architecture-independent models enable easy
integration into existing applications, preserve investments in
existing code, and speed the development of parallel applications.
Examples from realistic contexts illustrate patterns and themes in
parallel algorithm design that are widely applicable regardless of
implementation technology.
|
You may like...
High Times - The Extraordinary Life Of A…
Roy Isacowitz, Jeremy Gordin
Paperback
William Morris, Poet, Artist, Socialist…
William 1834-1896 Morris, Francis Watts Lee
Hardcover
R883
Discovery Miles 8 830
Because I Couldn't Kill You - On Her…
Kelly-Eve Koopman
Paperback
(2)
|