![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This book collects invited lectures presented and discussed on the AMAS & ECCOMAS Workshop/Thematic Conference SMART'o3. The SMART'o3 Conference on Smart Materials and Structures was held in a 19th century palace in Jadwisin near Warsaw, 2-5 September 2003, Poland .It was organized by the Advanced Materials and Structures (AMAS) Centre of Excellence at the Institute of Fundamental Technological Research (IFTR) in Warsaw, ECCOMAS - European Community on Computational Methods in Applied Sciences and SMART-TECH Centre at IFTR. The idea of the workshop was to bring together and consolidate the community of Smart Materials and Structures in Europe. The workshop was attended by 66 participants from n European countries (Austria, Belgium, Finland, France, Germany, Italy, Poland, Portugal, Spain, U.K., Ukraine), 1 participant from Israel and 1 participant from the USA. The workshop program was grouped into the following major topics: 4 sessions on Structural Control (18 presentations), 3 sessions on Vibration Controland Dynamics (14 presentations), 2 sessions on Damage Identification (10 presentations), 2 sessions on Smart Materials (9 presentations). Each session was composed of an invited lecture and some contributed papers. Every paper scheduled in the program was presented, so altogether 51 presentations were given. No sessions were run in parallel. The workshop was attended not only by researchers but also by people closely related to the industry. There were interesting discussions on scientific merits of the presented papers as well as on future development of the field and its possible industrial applications.
This book collects invited lectures presented and discussed on the AMAS & ECCOMAS Workshop/Thematic Conference SMART'o3. The SMART'o3 Conference on Smart Materials and Structures was held in a 19th century palace in Jadwisin near Warsaw, 2-5 September 2003, Poland .It was organized by the Advanced Materials and Structures (AMAS) Centre of Excellence at the Institute of Fundamental Technological Research (IFTR) in Warsaw, ECCOMAS - European Community on Computational Methods in Applied Sciences and SMART-TECH Centre at IFTR. The idea of the workshop was to bring together and consolidate the community of Smart Materials and Structures in Europe. The workshop was attended by 66 participants from n European countries (Austria, Belgium, Finland, France, Germany, Italy, Poland, Portugal, Spain, U.K., Ukraine), 1 participant from Israel and 1 participant from the USA. The workshop program was grouped into the following major topics: 4 sessions on Structural Control (18 presentations), 3 sessions on Vibration Controland Dynamics (14 presentations), 2 sessions on Damage Identification (10 presentations), 2 sessions on Smart Materials (9 presentations). Each session was composed of an invited lecture and some contributed papers. Every paper scheduled in the program was presented, so altogether 51 presentations were given. No sessions were run in parallel. The workshop was attended not only by researchers but also by people closely related to the industry. There were interesting discussions on scientific merits of the presented papers as well as on future development of the field and its possible industrial applications.
Smart (intelligent) structures have been the focus of a great deal of recent research interest. In this book, leading researchers report the state of the art and discuss new ideas, results and trends in 43 contributions, covering fundamental research issues, the role of intelligent monitoring in structural identification and damage assessment, the potential of automatic control systems in achieving a desired structural behaviour, and a number of practical issues in the analysis and design of smart structures in mechanical and civil engineering applications. Audience: A multidisciplinary reference for materials scientists and engineers in such areas as mechanical, civil, aeronautical, electrical, control, and computer engineering.
Smart (intelligent) structures have been the focus of a great deal of recent research interest. In this book, leading researchers report the state of the art and discuss new ideas, results and trends in 43 contributions, covering fundamental research issues, the role of intelligent monitoring in structural identification and damage assessment, the potential of automatic control systems in achieving a desired structural behaviour, and a number of practical issues in the analysis and design of smart structures in mechanical and civil engineering applications. Audience: A multidisciplinary reference for materials scientists and engineers in such areas as mechanical, civil, aeronautical, electrical, control, and computer engineering.
Virtual distortions are incompatible deIormations imposed on structures (e. g. , by nonhomogeneous heating or by local imperIections) causing a compatible state OI deIormation (initial deformations) and a selI-equilibrated state OI stress (initial stresses). The theory OI virtual distortions provides an eIIicient tool which can be used to treat many problems that diIIer Irom the physical point OI view. Thermal stresses, material deIects, residual stresses in plasticity are examples OI problems that can be analysed emploing the virtual distortions approach, where the temperature Iield, dislocations and plastic distortions (permanent plastic deIormations) are described by virtual distortions. The presented approach allows the development OI eIIicient computational methods Ior numerical analysis OI such problems. States OI compatible deIormations and selI-equi1 ibrated stresses caused by virtual distortions in homogeneous and compound (biphase) bodies are analysed in the Iirst part OI the book. The results OI these considerations are explored in the next two chapters. The Iormulation OI the approach discussed in Chapter 1 and based on continuum mechanics was presented previously in the papers [5,17] while its application to the analysis OI skeletal structures was discussed in [47].
Smart technologies comprise a dynamic new interdisciplinary research field that encompasses a wide spectrum of engineering applications including, but not limited to, intelligent structures and materials, actuators, sensors and structural observability, control systems and software tools for the design of adaptive structures. Smart technologies focus on the issues surrounding the safety and integrity of engineering systems. Smart Technologies for Safety Engineering presents the achievements of ten years of research from the Smart-Tech Centre applied to some of the key issues of safety engineering. Results presented include: Original methods and software tools for modelling, design, simulation and control of adaptive structures and applicability of the adaptive concept to the design of structures for extreme loads; Application of the smart-tech concept to hot research topics and emerging engineering issues including health monitoring of structures and engineering systems, monitoring of loading conditions, automatic structural adaptation to unpredictable, randomly changing dynamic conditions and the optimal design of adaptive structures and engineering systems; Numerically efficient and original software packages that can be used for the design of adaptive, as well as passive (without control devices) structures. The Virtual Distortion Method, which has been developed especially for fast reanalysis of structures and systems and exact sensitivity analysis, allowing for effective modelling, design, health monitoring and control of smart engineering systems. The original research and practical applications in Smart Technologies for Safety Engineering will appeal to abroad spectrum of engineers, researchers, professors and graduate students involved in the research, design and development of widely understood adaptronics and mechatronics, including smart structures and materials, adaptive impact absorption, health and load monitoring, vibration control, vibroacoustics and related issues.
|
![]() ![]() You may like...
|