Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book is mainly a collection of lecture notes for the 2021 LIASFMA International Graduate School on Applied Mathematics. It provides the readers some important results on the theory, the methods, and the application in the field of 'Control of Partial Differential Equations'. It is useful for researchers and graduate students in mathematics or control theory, and for mathematicians or engineers with an interest in control systems governed by partial differential equations.
Haim Brezis has made significant contributions in the fields of partial differential equations and functional analysis, and this volume collects contributions by his former students and collaborators in honor of his 60th anniversary at a conference in Gaeta. It presents new developments in the theory of partial differential equations with emphasis on elliptic and parabolic problems.
This volume (>Ie) NEMATICS Mathematical and Physical aspects constitutes the proceedings of a workshop which was held at l'Universite de Paris Sud (Orsay) in May 1990. This meeting was an Advanced Research Workshop sponsored by NATO. We gratefully acknowledge the help and support of the NATO Science Committee. Additional support has been provided by the Ministere des affaires etrangeres (Paris) and by the Direction des Recherches et Etudes Techniques (Paris). Also logistic support has been provided by the Association des Numericiens d'Orsay. (*) These proceedings are published in the framework of the "Contrat DRET W 90/316/ AOOO." v Contents (*) FOREWORD v INTRODUCTION 1. M. CORON, 1. M. GHIDAGLIA, F. HELEIN xi AN ENERGY-DECREASING ALGORITHM FOR HARMONIC MAPS F. ALOUGES 1 A COHOMOLOGICAL CRITERION FOR DENSITY OF SMOOTH MAPS IN SOBOLEV SPACES BETWEEN TWO MANIFOLDS F. BETHUEL, 1. M. CORON, F. DEMENGEL, F. HELEIN 15 ON THE MATHEMATICAL MODELING OF TEXTURES IN POLYMERIC LIQUID CRYSTALS M. C. CAmERER 25 A RESULT ON THE GLOBAL EXISTENCE FOR HEAT FLOWS OF HARMONIC MAPS FROM D2 INTO S2 K. C. CHANG, W. Y. DING 37 BLOW-UP ANALYSIS FOR HEAT FLOW OF HARMONIC MAPS Y. CHEN 49 T AYLOR-COUETTE INSTABILITY IN NEMATIC LIQUID CRYSTALS P. E. ClADIS 65 ON A CLASS OF SOLUTIONS IN THE THEORY OF NEMATIC PHASES B. D. COLEMAN, 1. T. JENKINS 93 RHEOLOGY OF THERMOTROPIC NEMATIC LIQUID CRYSTALLINE POLYMERS M. M. DENN, 1. A.
This book is a collection of lecture notes for the LIASFMA Shanghai Summer School on 'One-dimensional Hyperbolic Conservation Laws and Their Applications' which was held during August 16 to August 27, 2015 at Shanghai Jiao Tong University, Shanghai, China. This summer school is one of the activities promoted by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA in short). LIASFMA was established jointly by eight institutions in China and France in 2014, which is aimed at providing a platform for some of the leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in the field of applied mathematics. This summer school has the privilege of being the first summer school of the newly established LIASFMA, which makes it significant.
This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a "backstepping" method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in real live applications of boundary feedback control. Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible.
This volume (>Ie) NEMATICS Mathematical and Physical aspects constitutes the proceedings of a workshop which was held at l'Universite de Paris Sud (Orsay) in May 1990. This meeting was an Advanced Research Workshop sponsored by NATO. We gratefully acknowledge the help and support of the NATO Science Committee. Additional support has been provided by the Ministere des affaires etrangeres (Paris) and by the Direction des Recherches et Etudes Techniques (Paris). Also logistic support has been provided by the Association des Numericiens d'Orsay. (*) These proceedings are published in the framework of the "Contrat DRET W 90/316/ AOOO." v Contents (*) FOREWORD v INTRODUCTION 1. M. CORON, 1. M. GHIDAGLIA, F. HELEIN xi AN ENERGY-DECREASING ALGORITHM FOR HARMONIC MAPS F. ALOUGES 1 A COHOMOLOGICAL CRITERION FOR DENSITY OF SMOOTH MAPS IN SOBOLEV SPACES BETWEEN TWO MANIFOLDS F. BETHUEL, 1. M. CORON, F. DEMENGEL, F. HELEIN 15 ON THE MATHEMATICAL MODELING OF TEXTURES IN POLYMERIC LIQUID CRYSTALS M. C. CAmERER 25 A RESULT ON THE GLOBAL EXISTENCE FOR HEAT FLOWS OF HARMONIC MAPS FROM D2 INTO S2 K. C. CHANG, W. Y. DING 37 BLOW-UP ANALYSIS FOR HEAT FLOW OF HARMONIC MAPS Y. CHEN 49 T AYLOR-COUETTE INSTABILITY IN NEMATIC LIQUID CRYSTALS P. E. ClADIS 65 ON A CLASS OF SOLUTIONS IN THE THEORY OF NEMATIC PHASES B. D. COLEMAN, 1. T. JENKINS 93 RHEOLOGY OF THERMOTROPIC NEMATIC LIQUID CRYSTALLINE POLYMERS M. M. DENN, 1. A.
This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a "backstepping" method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in real live applications of boundary feedback control. Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible.
The term "control theory" refers to the body of results - theoretical, numerical and algorithmic - which have been developed to influence the evolution of the state of a given system in order to meet a prescribed performance criterion. Systems of interest to control theory may be of very different natures. This monograph is concerned with models that can be described by partial differential equations of evolution. It contains five major contributions and is connected to the CIME Course on Control of Partial Differential Equations that took place in Cetraro (CS, Italy), July 19 - 23, 2010. Specifically, it covers the stabilization of evolution equations, control of the Liouville equation, control in fluid mechanics, control and numerics for the wave equation, and Carleman estimates for elliptic and parabolic equations with application to control. We are confident this work will provide an authoritative reference work for all scientists who are interested in this field, representing at the same time a friendly introduction to, and an updated account of, some of the most active trends in current research.
|
You may like...
|