Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
System Modeling and Optimization is an indispensable reference for anyone interested in the recent advances in these two disciplines. The book collects, for the first time, selected articles from the 21st and most recent IFIP TC 7 conference in Sophia Antipolis, France. Applied mathematicians and computer scientists can attest to the ever-growing influence of these two subjects. The practical applications of system modeling and optimization can be seen in a number of fields: environmental science, transport and telecommunications, image analysis, free boundary problems, bioscience, and non-cylindrical evolution control, to name just a few. New developments in each of these fields have contributed to a more complex understanding of both system modeling and optimization. Editors John Cagnol and Jean-Paul Zolesio, chairs of the conference, have assembled System Modeling and Optimization to present the most up-to-date developments to professionals and academics alike.
Problems involving the evolution of two- and three-dimensional domains arise in many areas of science and engineering. Emphasizing an Eulerian approach, Moving Shape Analysis and Control: Applications to Fluid Structure Interactions presents valuable tools for the mathematical analysis of evolving domains. The book illustrates the efficiency of the tools presented through different examples connected to the analysis of noncylindrical partial differential equations (PDEs), such as Navier-Stokes equations for incompressible fluids in moving domains. The authors first provide all of the details of existence and uniqueness of the flow in both strong and weak cases. After establishing several important principles and methods, they devote several chapters to demonstrating Eulerian evolution and derivation tools for the control of systems involving fluids and solids. The book concludes with the boundary control of fluid-structure interaction systems, followed by helpful appendices that review some of the advanced mathematics used throughout the text. This authoritative resource supplies the computational tools needed to optimize PDEs and investigate the control of complex systems involving a moving boundary.
Problems involving the evolution of two- and three-dimensional domains arise in many areas of science and engineering. Emphasizing an Eulerian approach, Moving Shape Analysis and Control: Applications to Fluid Structure Interactions presents valuable tools for the mathematical analysis of evolving domains. The book illustrates the efficiency of the tools presented through different examples connected to the analysis of noncylindrical partial differential equations (PDEs), such as Navier-Stokes equations for incompressible fluids in moving domains. The authors first provide all of the details of existence and uniqueness of the flow in both strong and weak cases. After establishing several important principles and methods, they devote several chapters to demonstrating Eulerian evolution and derivation tools for the control of systems involving fluids and solids. The book concludes with the boundary control of fluid-structure interaction systems, followed by helpful appendices that review some of the advanced mathematics used throughout the text. This authoritative resource supplies the computational tools needed to optimize PDEs and investigate the control of complex systems involving a moving boundary.
Based on selected papers presented at the 19th International Federatio Includes essential data on exact boundary controllability of thermoela Written by more than 25 specialists in various disciplines Providing o ver 1700 equations, tables, and references, this state-of-the-art refe rence is an invaluable tool for mathematical analysts in control, opti mization, distributed systems, and modeling; applied mathematicians; c ontrol, electrical, and electronics engineers; computer scientists; an d upper-level undergraduate and graduate students in these disciplines .
Addressing algebraic problems found in biomathematics and energy, Free and Moving Boundaries: Analysis, Simulation and Control discusses moving boundary and boundary control in systems described by partial differential equations (PDEs). With contributions from international experts, the book emphasizes numerical and theoretical control of moving boundaries in fluid structure couple systems, arteries, shape stabilization level methods, family of moving geometries, and boundary control. Using numerical analysis, the contributors examine the problems of optimal control theory applied to PDEs arising from continuum mechanics. The book presents several applications to electromagnetic devices, flow, control, computing, images analysis, topological changes, and free boundaries. It specifically focuses on the topics of boundary variation and control, dynamical control of geometry, optimization, free boundary problems, stabilization of structures, controlling fluid-structure devices, electromagnetism 3D, and inverse problems arising in areas such as biomathematics. Free and Moving Boundaries: Analysis, Simulation and Control explains why the boundary control of physical systems can be viewed as a moving boundary control, empowering the future research of select algebraic areas.
"Based on the International Federatiojn for Information Processing WG 7.2 Conference, held recently in Pisa, Italy. Provides recent results as well as entirely new material on control theory and shape analysis. Written by leading authorities from various desciplines."
"Based on the International Federatiojn for Information Processing WG 7.2 Conference, held recently in Pisa, Italy. Provides recent results as well as entirely new material on control theory and shape analysis. Written by leading authorities from various desciplines."
This volume presents developments and advances in modelling passive and active control systems governed by partial differential equations. It emphasizes shape analysis, optimal shape design, controllability, nonlinear boundary control, and stabilization. The authors include essential data on exact boundary controllability of thermoelastic plates with variable transmission coefficients.
Based on the Working Conference on Boundary Control and Boundary Variation held in Sophia-Antipolis, France, this work provides important examinations of shape optimization and boundary control of hyperbolic systems, including free boundary problems and stabilization. It offers a new approach to large and nonlinear variation of the boundary using global Eulerian co-ordinates and intrinsic geometry.
Based on the Working Conference on Boundary Control and Boundary Variation held in Sophia-Antipolis, France, this work provides important examinations of shape optimization and boundary control of hyperbolic systems, including free boundary problems and stabilization. It offers a new approach to large and nonlinear variation of the boundary using global Eulerian co-ordinates and intrinsic geometry.
This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem."
System Modeling and Optimization is an indispensable reference for anyone interested in the recent advances in these two disciplines. The book collects, for the first time, selected articles from the 21st and most recent IFIP TC 7 conference in Sophia Antipolis, France. Applied mathematicians and computer scientists can attest to the ever-growing influence of these two subjects. The practical applications of system modeling and optimization can be seen in a number of fields: environmental science, transport and telecommunications, image analysis, free boundary problems, bioscience, and non-cylindrical evolution control, to name just a few. New developments in each of these fields have contributed to a more complex understanding of both system modeling and optimization. Editors John Cagnol and Jean-Paul Zol sio, chairs of the conference, have assembled System Modeling and Optimization to present the most up-to-date developments to professionals and academics alike.
Addressing algebraic problems found in biomathematics and energy, Free and Moving Boundaries: Analysis, Simulation and Control discusses moving boundary and boundary control in systems described by partial differential equations. With contributions from international experts, the book emphasizes numerical and theoretical control of moving boundaries in fluid structure couple systems, arteries, shape stabilization level methods, family of moving geometries, and boundary control. Using numerical analysis, the contributors examine the problems of optimal control theory applied to partial differential equations arising from continuum mechanics. The book presents several applications to electromagnetic devices, flow, control, computing, images analysis, topological changes, and free boundaries. It specifically focuses on the topics of boundary variation and control, dynamical control of geometry, optimization, free boundary problems, stabilization of structures, controlling fluid-structure devices, electromagnetism 3D, and inverse problems arising in areas such as biomathematics.Free and Moving Boundaries: Analysis, Simulation and Control explains why the boundary control of physical systems can be viewed as a moving boundary control, empowering the future research of select algebraic areas.
This volume comprises selected papers from the 21st Conference on System Modeling and Optimization in Sophia Antipolis, France. It covers over three decades of studies involving partial differential systems and equations. Topics include: the modeling of continuous mechanics involving fixed boundary, control theory, shape optimization and moving boundaries, and topological shape optimization. This edition discusses all developments that lead to current moving boundary analysis and the stochastic approach.
|
You may like...
|