Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
This book addresses a number of questions from the perspective of complex systems: How can we quantitatively understand the life phenomena? How can we model life systems as complex bio-molecular networks? Are there any methods to clarify the relationships among the structures, dynamics and functions of bio-molecular networks? How can we statistically analyse large-scale bio-molecular networks? Focusing on the modeling and analysis of bio-molecular networks, the book presents various sophisticated mathematical and statistical approaches. The life system can be described using various levels of bio-molecular networks, including gene regulatory networks, and protein-protein interaction networks. It first provides an overview of approaches to reconstruct various bio-molecular networks, and then discusses the modeling and dynamical analysis of simple genetic circuits, coupled genetic circuits, middle-sized and large-scale biological networks, clarifying the relationships between the structures, dynamics and functions of the networks covered. In the context of large-scale bio-molecular networks, it introduces a number of statistical methods for exploring important bioinformatics applications, including the identification of significant bio-molecules for network medicine and genetic engineering. Lastly, the book describes various state-of-art statistical methods for analysing omics data generated by high-throughput sequencing. This book is a valuable resource for readers interested in applying systems biology, dynamical systems or complex networks to explore the truth of nature.
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of complex networks provide some applicable carriers, which show the importance of theories developed in complex networks. In particular, a general model for studying time evolution of transition networks, deflection routing in complex networks, recommender systems for social networks analysis and mining, strategy selection in networked evolutionary games, integration and methods in computational biology, are discussed in detail.
This book addresses a number of questions from the perspective of complex systems: How can we quantitatively understand the life phenomena? How can we model life systems as complex bio-molecular networks? Are there any methods to clarify the relationships among the structures, dynamics and functions of bio-molecular networks? How can we statistically analyse large-scale bio-molecular networks? Focusing on the modeling and analysis of bio-molecular networks, the book presents various sophisticated mathematical and statistical approaches. The life system can be described using various levels of bio-molecular networks, including gene regulatory networks, and protein-protein interaction networks. It first provides an overview of approaches to reconstruct various bio-molecular networks, and then discusses the modeling and dynamical analysis of simple genetic circuits, coupled genetic circuits, middle-sized and large-scale biological networks, clarifying the relationships between the structures, dynamics and functions of the networks covered. In the context of large-scale bio-molecular networks, it introduces a number of statistical methods for exploring important bioinformatics applications, including the identification of significant bio-molecules for network medicine and genetic engineering. Lastly, the book describes various state-of-art statistical methods for analysing omics data generated by high-throughput sequencing. This book is a valuable resource for readers interested in applying systems biology, dynamical systems or complex networks to explore the truth of nature.
This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of complex networks provide some applicable carriers, which show the importance of theories developed in complex networks. In particular, a general model for studying time evolution of transition networks, deflection routing in complex networks, recommender systems for social networks analysis and mining, strategy selection in networked evolutionary games, integration and methods in computational biology, are discussed in detail.
|
You may like...
|