![]() |
![]() |
Your cart is empty |
||
Showing 1 - 9 of 9 matches in All Departments
Spectral sequences are among the most elegant, most powerful, and most complicated methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first third of the book treats the algebraic foundations for this sort of homological algebra, starting from informal calculations, to give the novice a familiarity with the range of applications possible. The heart of the book is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
Using the unifying notion of group actions, this second course in modern algebra introduces the deeper algebraic tools needed to get into topics only hinted at in a first course, like the successful classification of finite simple groups and how groups play a role in the solutions of polynomial equations. Because groups may act as permutations of a set, as linear transformations on a vector space, or as automorphisms of a field, the deeper structure of a group may emerge from these viewpoints, two different groups can be distinguished, or a polynomial equation can be shown to be solvable by radicals. By developing the properties of these group actions, readers encounter essential algebra topics like the Sylow theorems and their applications, Galois theory, and representation theory. Warmup chapters that review and build on the first course and active learning modules help students transition to a deeper understanding of ideas.
Using the unifying notion of group actions, this second course in modern algebra introduces the deeper algebraic tools needed to get into topics only hinted at in a first course, like the successful classification of finite simple groups and how groups play a role in the solutions of polynomial equations. Because groups may act as permutations of a set, as linear transformations on a vector space, or as automorphisms of a field, the deeper structure of a group may emerge from these viewpoints, two different groups can be distinguished, or a polynomial equation can be shown to be solvable by radicals. By developing the properties of these group actions, readers encounter essential algebra topics like the Sylow theorems and their applications, Galois theory, and representation theory. Warmup chapters that review and build on the first course and active learning modules help students transition to a deeper understanding of ideas.
The development of geometry from Euclid to Euler to Lobachevsky, Bolyai, Gauss, and Riemann is a story that is often broken into parts axiomatic geometry, non-Euclidean geometry, and differential geometry. This poses a problem for undergraduates: Which part is geometry? What is the big picture to which these parts belong? In this introduction to differential geometry, the parts are united with all of their interrelations, motivated by the history of the parallel postulate. Beginning with the ancient sources, the author first explores synthetic methods in Euclidean and non-Euclidean geometry and then introduces differential geometry in its classical formulation, leading to the modern formulation on manifolds such as space-time. The presentation is enlivened by historical diversions such as Hugyens's clock and the mathematics of cartography. The intertwined approaches will help undergraduates understand the role of elementary ideas in the more general, differential setting. This thoroughly revised second edition includes numerous new exercises and a new solution key. New topics include Clairaut's relation for geodesics, Euclid's geometry of space, further properties of cycloids and map projections, and the use of transformations such as the reflections of the Beltrami disk.
The development of geometry from Euclid to Euler to Lobachevsky, Bolyai, Gauss, and Riemann is a story that is often broken into parts axiomatic geometry, non-Euclidean geometry, and differential geometry. This poses a problem for undergraduates: Which part is geometry? What is the big picture to which these parts belong? In this introduction to differential geometry, the parts are united with all of their interrelations, motivated by the history of the parallel postulate. Beginning with the ancient sources, the author first explores synthetic methods in Euclidean and non-Euclidean geometry and then introduces differential geometry in its classical formulation, leading to the modern formulation on manifolds such as space-time. The presentation is enlivened by historical diversions such as Hugyens's clock and the mathematics of cartography. The intertwined approaches will help undergraduates understand the role of elementary ideas in the more general, differential setting. This thoroughly revised second edition includes numerous new exercises and a new solution key. New topics include Clairaut's relation for geodesics, Euclid's geometry of space, further properties of cycloids and map projections, and the use of transformations such as the reflections of the Beltrami disk.
Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.
What does style mean in mathematics? Style is both how one does something and how one communicates what was done. In this book, the author investigates the worlds of the well-known numbers, the binomial coefficients. The author follows the example of Raymond Queneau’s Exercises in Style. Offering the reader 99 stories in various styles. The book celebrates the joy of mathematics and the joy of writing mathematics by exploring the rich properties of this familiar collection of numbers. For any one interested in mathematics, from high school students on up.
The development of algebraic topology in the 1950's and 1960's was deeply influenced by the work of Milnor. In this collection of papers, the reader finds those original papers and some previously unpublished works. The book is divided into four parts: Homotopy Theory, Homology and Cohomology, Manifolds, and Expository Papers. Introductions to each part provide some historical context and subsequent development. Of particular interest are the articles on classifying spaces, the Steenrod algebra, the introductory notes on foliations and the surveys of work on the Poincare conjecture. Together with the previously published volumes I-III of the ""Collected Works"" by John Milnor, volume IV provides a rich portion of the most important developments in geometry and topology from those decades. This volume is highly recommended to a broad mathematical audience, and, in particular, to young mathematicians who will certainly benefit from their acquaintance with Milnor's mode of thinking and writing.
|
![]() ![]() You may like...
Respiratory Emergencies, An Issue of…
Robert Vissers, Michael A. Gibbs
Hardcover
R1,782
Discovery Miles 17 820
Ward 10, Precinct 1, City of Boston…
Boston Election Department
Paperback
R635
Discovery Miles 6 350
Labour Disrupted - Reflections On The…
Malehoko Tshoaedi, Christine Bischoff, …
Paperback
The Middle Income Group in China and…
Peilin Li, M. K. Gorshkov
Hardcover
R4,664
Discovery Miles 46 640
|