Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 37 matches in All Departments
This book ranks countries with respect to their achievement of the Sustainable Development Goals and their vulnerability to climate change. Human livelihoods, stable economies, health, and high quality of life all depend on a stable climate and earth system, and a diversity of species and ecosystems. Climate change significantly impacts human trafficking, modern slavery, and global hunger. This book examines these global problems using techniques from mathematics of uncertainty. Since accurate data concerning human trafficking and modern slavery is impossible to obtain, mathematics of uncertainty is an ideal discipline to study these problems. The book also considers the interconnection between climate change, world hunger, human trafficking, modern slavery, and the coronavirus. Connectivity properties of fuzzy graphs are used to examine trafficking flow between regions in the world. The book is an excellent reference source for advanced undergraduate and graduate students in mathematics and the social sciences as well as for researchers and teachers.
This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow's theorem; the Gibbard-Satterthwaite theorem and the median voter theorem. After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a social choice that can be both strategy-proof and non-dictatorial. Moreover, the median voter theorem is shown to hold under strict fuzzy preferences but not under weak fuzzy preferences. By providing a standard model of fuzzy social choice and by drawing the necessary connections between the major theorems, this book fills an important gap in the current literature and encourages future empirical research in the field.
This book uses mathematics of uncertainty to examine how well countries are achieving the 17 Sustainable Development Goals (SDGs) set by the members of the United Nations, with a focus on climate change, human trafficking and modern slavery. Although this approach has never been used before, mathematics of uncertainty is well suited to exploring these topics due to the lack of accurate data available. The authors place several scientific studies in a mathematical setting to pave the way for future research on issues of sustainability, climate change, human trafficking and modern slavery to using a wide range of mathematical techniques. Moreover, the book ranks countries in terms of their achievement of not only the SDGs, but in particular those SDGs pertinent to climate change, human trafficking, and modern slavery, and highlights the deficiencies in the foster care system that lead to human trafficking. As such it is an excellent reference resource for advanced undergraduate and graduate students in mathematics and the social sciences, as well as for researchers and teachers.
This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made. The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems.Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes parties fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the predictions are compared with those made by two conventional approaches as well as with the government that was actually formed. The comparison shows that, in most cases, the fuzzy approaches outperform their conventional counterparts."
This book presents an up-to-date account of research in important topics of fuzzy group theory. It concentrates on the theoretical aspects of fuzzy subgroups of a group. It includes applications to abstract recognition problems and to coding theory. The book begins with basic properties of fuzzy subgroups. Fuzzy subgroups of Hamiltonian, solvable, P-Hall, and nilpotent groups are discussed. Construction of free fuzzy subgroups is determined. Numerical invariants of fuzzy subgroups of Abelian groups are developed. The problem in group theory of obtaining conditions under which a group can be expressed as a direct product of its normal subgroups is considered. Methods for deriving fuzzy theorems from crisp ones are presented and the embedding of lattices of fuzzy subgroups into lattices of crisp groups is discussed as well as deriving membership functions from similarity relations. The material presented makes this book a good reference for graduate students and researchers working in fuzzy group theory.
In the course of fuzzy technological development, fuzzy graph theory was identified quite early on for its importance in making things work. Two very important and useful concepts are those of granularity and of nonlinear ap proximations. The concept of granularity has evolved as a cornerstone of Lotfi A.Zadeh's theory of perception, while the concept of nonlinear approx imation is the driving force behind the success of the consumer electronics products manufacturing. It is fair to say fuzzy graph theory paved the way for engineers to build many rule-based expert systems. In the open literature, there are many papers written on the subject of fuzzy graph theory. However, there are relatively books available on the very same topic. Professors' Mordeson and Nair have made a real contribution in putting together a very com prehensive book on fuzzy graphs and fuzzy hypergraphs. In particular, the discussion on hypergraphs certainly is an innovative idea. For an experienced engineer who has spent a great deal of time in the lab oratory, it is usually a good idea to revisit the theory. Professors Mordeson and Nair have created such a volume which enables engineers and design ers to benefit from referencing in one place. In addition, this volume is a testament to the numerous contributions Professor John N. Mordeson and his associates have made to the mathematical studies in so many different topics of fuzzy mathematics."
This book explores the intersection of fuzzy mathematics and the spatial modeling of preferences in political science. Beginning with a critique of conventional modeling approaches predicated on Cantor set theoretical assumptions, the authors outline the potential benefits of a fuzzy approach to the study of ambiguous or uncertain preference profiles. This is a good text for a graduate seminar in formal modeling. It is also suitable as an introductory text in fuzzy mathematics.
The purpose of this book is to present an up to date account of fuzzy ideals of a semiring. The book concentrates on theoretical aspects and consists of eleven chapters including three invited chapters. Among the invited chapters, two are devoted to applications of Semirings to automata theory, and one deals with some generalizations of Semirings. This volume may serve as a useful hand book for graduate students and researchers in the areas of Mathematics and Theoretical Computer Science.
The purpose of this book is to present an up to date account of fuzzy subsemigroups and fuzzy ideals of a semigroup. The book concentrates on theoretical aspects, but also includes applications in the areas of fuzzy coding theory, fuzzy finite state machines, and fuzzy languages. Basic results on fuzzy subsets, semigroups, codes, finite state machines, and languages are reviewed and introduced, as well as certain fuzzy ideals of a semigroup and advanced characterizations and properties of fuzzy semigroups.
This ambitious exposition by Malik and Mordeson on the fuzzification of discrete structures not only supplies a solid basic text on this key topic, but also serves as a viable tool for learning basic fuzzy set concepts "from the ground up" due to its unusual lucidity of exposition. While the entire presentation of this book is in a completely traditional setting, with all propositions and theorems provided totally rigorous proofs, the readability of the presentation is not compromised in any way; in fact, the many ex cellently chosen examples illustrate the often tricky concepts the authors address. The book's specific topics - including fuzzy versions of decision trees, networks, graphs, automata, etc. - are so well presented, that it is clear that even those researchers not primarily interested in these topics will, after a cursory reading, choose to return to a more in-depth viewing of its pages. Naturally, when I come across such a well-written book, I not only think of how much better I could have written my co-authored monographs, but naturally, how this work, as distant as it seems to be from my own area of interest, could nevertheless connect with such. Before presenting the briefest of some ideas in this direction, let me state that my interest in fuzzy set theory (FST) has been, since about 1975, in connecting aspects of FST directly with corresponding probability concepts. One chief vehicle in carrying this out involves the concept of random sets."
This book provides a timely overview of fuzzy graph theory, laying the foundation for future applications in a broad range of areas. It introduces readers to fundamental theories, such as Craine's work on fuzzy interval graphs, fuzzy analogs of Marczewski's theorem, and the Gilmore and Hoffman characterization. It also introduces them to the Fulkerson and Gross characterization and Menger's theorem, the applications of which will be discussed in a forthcoming book by the same authors. This book also discusses in detail important concepts such as connectivity, distance and saturation in fuzzy graphs. Thanks to the good balance between the basics of fuzzy graph theory and new findings obtained by the authors, the book offers an excellent reference guide for advanced undergraduate and graduate students in mathematics, engineering and computer science, and an inspiring read for all researchers interested in new developments in fuzzy logic and applied mathematics.
In the mid-1960's I had the pleasure of attending a talk by Lotfi Zadeh at which he presented some of his basic (and at the time, recent) work on fuzzy sets. Lotfi's algebra of fuzzy subsets of a set struck me as very nice; in fact, as a graduate student in the mid-1950's, I had suggested similar ideas about continuous-truth-valued propositional calculus (inffor "and," sup for "or") to my advisor, but he didn't go for it (and in fact, confused it with the foundations of probability theory), so I ended up writing a thesis in a more conventional area of mathematics (differential algebra). I especially enjoyed Lotfi's discussion of fuzzy convexity; I remember talking to him about possible ways of extending this work, but I didn't pursue this at the time. I have elsewhere told the story of how, when I saw C. L. Chang's 1968 paper on fuzzy topological spaces, I was impelled to try my hand at fuzzi fying algebra. This led to my 1971 paper "Fuzzy groups," which became the starting point of an entire literature on fuzzy algebraic structures. In 1974 King-Sun Fu invited me to speak at a U. S. -Japan seminar on Fuzzy Sets and their Applications, which was to be held that summer in Berkeley."
This book examines some issues involving climate change, human trafficking, and other serious world challenges made worse by climate change. Climate change increases the risk of natural disasters and thus creates poverty and can cause situations of conflict and instability. Displacement can occur giving traffickers an opportunity to exploit affected people. In the fuzzy graph theory part of the book, the relatively new concepts of fuzzy soft semigraphs and graph structures are used to study human trafficking, as well as its time intuitionistic fuzzy sets that have been introduced to model forest fires. The notion of legal and illegal incidence strength is used to analyze immigration to the USA. The examination of return refugees to their origin countries is undertaken. The neighborhood connectivity index is determined for trafficking in various regions in the world. The cycle connectivity measure for the directed graph of the flow from South America to the USA is calculated. It is determined that there is a need for improvement in government response by countries. Outside the area of fuzzy graph theory, a new approach to examine climate change is introduced. Social network theory is used to study feedback processes that effect climate forcing. Tipping points in climate change are considered. The relationship between terrorism and climate change is examined. Ethical issues concerning the obligation of business organizations to reduce carbon emissions are also considered. Nonstandard analysis is a possible new area that could be used by scholars of mathematics of uncertainty. A foundation is laid to aid the researcher in the understanding of nonstandard analysis. In order to accomplish this, a discussion of some basic concepts from first-order logic is presented as some concepts of mathematics of uncertainty. An application to the theory of relativity is presented.
This book presents several aspects of research on mathematics that have significant applications in engineering, modelling and social matters, discussing a number of current and future social issues and problems in which mathematical tools can be beneficial. Each chapter enhances our understanding of the research problems in a particular an area of study and highlights the latest advances made in that area. The self-contained contributions make the results and problems discussed accessible to readers, and provides references to enable those interested to follow subsequent studies in still developing fields. Presenting real-world applications, the book is a valuable resource for graduate students, researchers and educators. It appeals to general readers curious about the practical applications of mathematics in diverse scientific areas and social problems.
Fuzzy social choice theory is useful for modeling the uncertainty and imprecision prevalent in social life yet it has been scarcely applied and studied in the social sciences. Filling this gap, Application of Fuzzy Logic to Social Choice Theory provides a comprehensive study of fuzzy social choice theory. The book explains the concept of a fuzzy maximal subset of a set of alternatives, fuzzy choice functions, the factorization of a fuzzy preference relation into the "union" (conorm) of a strict fuzzy relation and an indifference operator, fuzzy non-Arrowian results, fuzzy versions of Arrow's theorem, and Black's median voter theorem for fuzzy preferences. It examines how unambiguous and exact choices are generated by fuzzy preferences and whether exact choices induced by fuzzy preferences satisfy certain plausible rationality relations. The authors also extend known Arrowian results involving fuzzy set theory to results involving intuitionistic fuzzy sets as well as the Gibbard-Satterthwaite theorem to the case of fuzzy weak preference relations. The final chapter discusses Georgescu's degree of similarity of two fuzzy choice functions.
The huge number and broad range of the existing and potential applications of fuzzy logic have precipitated a veritable avalanche of books published on the subject. Most, however, focus on particular areas of application. Many do no more than scratch the surface of the theory that holds the power and promise of fuzzy logic. Fuzzy Automata and Languages: Theory and Applications offers the first in-depth treatment of the theory and mathematics of fuzzy automata and fuzzy languages. After introducing background material, the authors study max-min machines and max-product machines, developing their respective algebras and exploring properties such as equivalences, homomorphisms, irreducibility, and minimality. The focus then turns to fuzzy context-free grammars and languages, with special attention to trees, fuzzy dendrolanguage generating systems, and normal forms. A treatment of algebraic fuzzy automata theory follows, along with additional results on fuzzy languages, minimization of fuzzy automata, and recognition of fuzzy languages. Although the book is theoretical in nature, the authors also discuss applications in a variety of fields, including databases, medicine, learning systems, and pattern recognition. Much of the information on fuzzy languages is new and never before presented in book form. Fuzzy Automata and Languages incorporates virtually all of the important material published thus far. It stands alone as a complete reference on the subject and belongs on the shelves of anyone interested in fuzzy mathematics or its applications.
This book builds on two recently published books by the same authors on fuzzy graph theory. Continuing in their tradition, it provides readers with an extensive set of tools for applying fuzzy mathematics and graph theory to social problems such as human trafficking and illegal immigration. Further, it especially focuses on advanced concepts such as connectivity and Wiener indices in fuzzy graphs, distance, operations on fuzzy graphs involving t-norms, and the application of dialectic synthesis in fuzzy graph theory. Each chapter also discusses a number of key, representative applications. Given its approach, the book provides readers with an authoritative, self-contained guide to - and at the same time an inspiring read on - the theory and modern applications of fuzzy graphs. For newcomers, the book also includes a brief introduction to fuzzy sets, fuzzy relations and fuzzy graphs.
The huge number and broad range of the existing and potential applications of fuzzy logic have precipitated a veritable avalanche of books published on the subject. Most, however, focus on particular areas of application. Many do no more than scratch the surface of the theory that holds the power and promise of fuzzy logic.
This book ranks countries with respect to their achievement of the Sustainable Development Goals and their vulnerability to climate change. Human livelihoods, stable economies, health, and high quality of life all depend on a stable climate and earth system, and a diversity of species and ecosystems. Climate change significantly impacts human trafficking, modern slavery, and global hunger. This book examines these global problems using techniques from mathematics of uncertainty. Since accurate data concerning human trafficking and modern slavery is impossible to obtain, mathematics of uncertainty is an ideal discipline to study these problems. The book also considers the interconnection between climate change, world hunger, human trafficking, modern slavery, and the coronavirus. Connectivity properties of fuzzy graphs are used to examine trafficking flow between regions in the world. The book is an excellent reference source for advanced undergraduate and graduate students in mathematics and the social sciences as well as for researchers and teachers.
The volume contains original research papers as the Proceedings of the International Conference on Advances in Mathematics and Computing, held at Veer Surendra Sai University of Technology, Odisha, India, on 7-8 February, 2020. It focuses on new trends in applied analysis, computational mathematics and related areas. It also includes certain new models, image analysis technique, fluid flow problems, etc. as applications of mathematical analysis and computational mathematics. The volume should bring forward new and emerging topics of mathematics and computing having potential applications and uses in other areas of sciences. It can serve as a valuable resource for graduate students, researchers and educators interested in mathematical tools and techniques for solving various problems arising in science and engineering.
This book uses mathematics of uncertainty to examine how well countries are achieving the 17 Sustainable Development Goals (SDGs) set by the members of the United Nations, with a focus on climate change, human trafficking and modern slavery. Although this approach has never been used before, mathematics of uncertainty is well suited to exploring these topics due to the lack of accurate data available. The authors place several scientific studies in a mathematical setting to pave the way for future research on issues of sustainability, climate change, human trafficking and modern slavery to using a wide range of mathematical techniques. Moreover, the book ranks countries in terms of their achievement of not only the SDGs, but in particular those SDGs pertinent to climate change, human trafficking, and modern slavery, and highlights the deficiencies in the foster care system that lead to human trafficking. As such it is an excellent reference resource for advanced undergraduate and graduate students in mathematics and the social sciences, as well as for researchers and teachers.
This book presents several aspects of research on mathematics that have significant applications in engineering, modelling and social matters, discussing a number of current and future social issues and problems in which mathematical tools can be beneficial. Each chapter enhances our understanding of the research problems in a particular an area of study and highlights the latest advances made in that area. The self-contained contributions make the results and problems discussed accessible to readers, and provides references to enable those interested to follow subsequent studies in still developing fields. Presenting real-world applications, the book is a valuable resource for graduate students, researchers and educators. It appeals to general readers curious about the practical applications of mathematics in diverse scientific areas and social problems.
This book reports on advanced concepts in fuzzy graph theory, showing a set of tools that can be successfully applied to understanding and modeling illegal human trafficking. Building on the previous book on fuzzy graph by the same authors, which set the fundamentals for readers to understand this developing field of research, this second book gives a special emphasis to applications of the theory. For this, authors introduce new concepts, such as intuitionistic fuzzy graphs, the concept of independence and domination in fuzzy graphs, as well as directed fuzzy networks, incidence graphs and many more.
This book offers a comprehensive analysis of the social choice literature and shows, by applying fuzzy sets, how the use of fuzzy preferences, rather than that of strict ones, may affect the social choice theorems. To do this, the book explores the presupposition of rationality within the fuzzy framework and shows that the two conditions for rationality, completeness and transitivity, do exist with fuzzy preferences. Specifically, this book examines: the conditions under which a maximal set exists; the Arrow’s theorem; the Gibbard-Satterthwaite theorem and the median voter theorem. After showing that a non-empty maximal set does exists for fuzzy preference relations, this book goes on to demonstrating the existence of a fuzzy aggregation rule satisfying all five Arrowian conditions, including non-dictatorship. While the Gibbard-Satterthwaite theorem only considers individual fuzzy preferences, this work shows that both individuals and groups can choose alternatives to various degrees, resulting in a social choice that can be both strategy-proof and non-dictatorial. Moreover, the median voter theorem is shown to hold under strict fuzzy preferences but not under weak fuzzy preferences. By providing a standard model of fuzzy social choice and by drawing the necessary connections between the major theorems, this book fills an important gap in the current literature and encourages future empirical research in the field.
This book explores the extent to which fuzzy set logic can overcome some of the shortcomings of public choice theory, particularly its inability to provide adequate predictive power in empirical studies. Especially in the case of social preferences, public choice theory has failed to produce the set of alternatives from which collective choices are made. The book presents empirical findings achieved by the authors in their efforts to predict the outcome of government formation processes in European parliamentary and semi-presidential systems. Using data from the Comparative Manifesto Project (CMP), the authors propose a new approach that reinterprets error in the coding of CMP data as ambiguity in the actual political positions of parties on the policy dimensions being coded. The range of this error establishes parties’ fuzzy preferences. The set of possible outcomes in the process of government formation is then calculated on the basis of both the fuzzy Pareto set and the fuzzy maximal set, and the predictions are compared with those made by two conventional approaches as well as with the government that was actually formed. The comparison shows that, in most cases, the fuzzy approaches outperform their conventional counterparts. |
You may like...
|