0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (7)
  • R2,500 - R5,000 (3)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 11 of 11 matches in All Departments

Rational Sphere Maps (Hardcover, 1st ed. 2021): John P. D'Angelo Rational Sphere Maps (Hardcover, 1st ed. 2021)
John P. D'Angelo
R3,628 Discovery Miles 36 280 Ships in 10 - 15 working days

This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics. Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples. Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material. The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps. The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps. Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problems will encourage readers to apply the material to future research. Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry. Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing. See the author's research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html

Linear and Complex Analysis for Applications (Paperback): John P. D'Angelo Linear and Complex Analysis for Applications (Paperback)
John P. D'Angelo
R1,531 Discovery Miles 15 310 Ships in 12 - 19 working days

Linear and Complex Analysis for Applications aims to unify various parts of mathematical analysis in an engaging manner and to provide a diverse and unusual collection of applications, both to other fields of mathematics and to physics and engineering. The book evolved from several of the author's teaching experiences, his research in complex analysis in several variables, and many conversations with friends and colleagues. It has three primary goals: to develop enough linear analysis and complex variable theory to prepare students in engineering or applied mathematics for advanced work, to unify many distinct and seemingly isolated topics, to show mathematics as both interesting and useful, especially via the juxtaposition of examples and theorems. The book realizes these goals by beginning with reviews of Linear Algebra, Complex Numbers, and topics from Calculus III. As the topics are being reviewed, new material is inserted to help the student develop skill in both computation and theory. The material on linear algebra includes infinite-dimensional examples arising from elementary calculus and differential equations. Line and surface integrals are computed both in the language of classical vector analysis and by using differential forms. Connections among the topics and applications appear throughout the book. The text weaves abstract mathematics, routine computational problems, and applications into a coherent whole, whose unifying theme is linear systems. It includes many unusual examples and contains more than 450 exercises.

Several Complex Variables and the Geometry of Real Hypersurfaces (Hardcover, New): John P. D'Angelo Several Complex Variables and the Geometry of Real Hypersurfaces (Hardcover, New)
John P. D'Angelo; Series edited by Steven G. Krantz
R7,927 Discovery Miles 79 270 Ships in 12 - 19 working days

Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved).
Principal prerequisites for using this book include a thorough understanding of advanced calculus and standard knowledge of complex analysis in one variable. Several Complex Variables and the Geometry of Real Hypersurfaces will be a useful text for advanced graduate students and professionals working in complex analysis.

Rational Sphere Maps (Paperback, 1st ed. 2021): John P. D'Angelo Rational Sphere Maps (Paperback, 1st ed. 2021)
John P. D'Angelo
R3,597 Discovery Miles 35 970 Ships in 10 - 15 working days

This monograph systematically explores the theory of rational maps between spheres in complex Euclidean spaces and its connections to other areas of mathematics. Synthesizing research from the last forty years, the author aims for accessibility by balancing abstract concepts with concrete examples. Numerous computations are worked out in detail, and more than 100 optional exercises are provided throughout for readers wishing to better understand challenging material. The text begins by presenting core concepts in complex analysis and a wide variety of results about rational sphere maps. The subsequent chapters discuss combinatorial and optimization results about monomial sphere maps, groups associated with rational sphere maps, relevant complex and CR geometry, and some geometric properties of rational sphere maps. Fifteen open problems appear in the final chapter, with references provided to appropriate parts of the text. These problems will encourage readers to apply the material to future research. Rational Sphere Maps will be of interest to researchers and graduate students studying several complex variables and CR geometry. Mathematicians from other areas, such as number theory, optimization, and combinatorics, will also find the material appealing. See the author's research web page for a list of typos, clarifications, etc.: https://faculty.math.illinois.edu/~jpda/research.html

Hermitian Analysis - From Fourier Series to Cauchy-Riemann Geometry (Paperback, Softcover reprint of the original 1st ed.... Hermitian Analysis - From Fourier Series to Cauchy-Riemann Geometry (Paperback, Softcover reprint of the original 1st ed. 2013)
John P. D'Angelo
R2,458 Discovery Miles 24 580 Ships in 10 - 15 working days

Hermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from undergraduate analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book, geometric considerations. This chapter includes complex differential forms, geometric inequalities from one and several complex variables, and includes some of the author's results. The concept of orthogonality weaves the material into a coherent whole. This textbook will be a useful resource for upper-undergraduate students who intend to continue with mathematics, graduate students interested in analysis, and researchers interested in some basic aspects of CR Geometry. The inclusion of several hundred exercises makes this book suitable for a capstone undergraduate Honors class.

Several Complex Variables and the Geometry of Real Hypersurfaces (Paperback): John P. D'Angelo Several Complex Variables and the Geometry of Real Hypersurfaces (Paperback)
John P. D'Angelo; Series edited by Steven G. Krantz
R2,043 Discovery Miles 20 430 Ships in 12 - 19 working days

Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved). Principal prerequisites for using this book include a thorough understanding of advanced calculus and standard knowledge of complex analysis in one variable. Several Complex Variables and the Geometry of Real Hypersurfaces will be a useful text for advanced graduate students and professionals working in complex analysis.

Linear and Complex Analysis for Applications (Hardcover): John P. D'Angelo Linear and Complex Analysis for Applications (Hardcover)
John P. D'Angelo
R2,834 Discovery Miles 28 340 Ships in 12 - 19 working days

Linear and Complex Analysis for Applications aims to unify various parts of mathematical analysis in an engaging manner and to provide a diverse and unusual collection of applications, both to other fields of mathematics and to physics and engineering. The book evolved from several of the author's teaching experiences, his research in complex analysis in several variables, and many conversations with friends and colleagues. It has three primary goals: to develop enough linear analysis and complex variable theory to prepare students in engineering or applied mathematics for advanced work, to unify many distinct and seemingly isolated topics, to show mathematics as both interesting and useful, especially via the juxtaposition of examples and theorems. The book realizes these goals by beginning with reviews of Linear Algebra, Complex Numbers, and topics from Calculus III. As the topics are being reviewed, new material is inserted to help the student develop skill in both computation and theory. The material on linear algebra includes infinite-dimensional examples arising from elementary calculus and differential equations. Line and surface integrals are computed both in the language of classical vector analysis and by using differential forms. Connections among the topics and applications appear throughout the book. The text weaves abstract mathematics, routine computational problems, and applications into a coherent whole, whose unifying theme is linear systems. It includes many unusual examples and contains more than 450 exercises.

Hermitian Analysis - From Fourier Series to Cauchy-Riemann Geometry (Paperback, 2nd ed. 2019): John P. D'Angelo Hermitian Analysis - From Fourier Series to Cauchy-Riemann Geometry (Paperback, 2nd ed. 2019)
John P. D'Angelo
R1,767 Discovery Miles 17 670 Ships in 10 - 15 working days

This textbook provides a coherent, integrated look at various topics from undergraduate analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book, geometric considerations. This chapter includes complex differential forms, geometric inequalities from one and several complex variables, and includes some of the author's original results. The concept of orthogonality weaves the material into a coherent whole. This textbook will be a useful resource for upper-undergraduate students who intend to continue with mathematics, graduate students interested in analysis, and researchers interested in some basic aspects of Cauchy-Riemann (CR) geometry. The inclusion of several hundred exercises makes this book suitable for a capstone undergraduate Honors class. This second edition contains a significant amount of new material, including a new chapter dedicated to the CR geometry of the unit sphere. This chapter builds upon the first edition by presenting recent results about groups associated with CR sphere maps. From reviews of the first edition: The present book developed from the teaching experiences of the author in several honors courses. .... All the topics are motivated very nicely, and there are many exercises, which make the book ideal for a first-year graduate course on the subject. .... The style is concise, always very neat, and proofs are given with full details. Hence, I certainly suggest this nice textbook to anyone interested in the subject, even for self-study. Fabio Nicola, Politecnico di Torino, Mathematical Reviews D'Angelo has written an eminently readable book, including excellent explanations of pretty nasty stuff for even the more gifted upper division players .... It certainly succeeds in hooking the present browser: I like this book a great deal. Michael Berg, Loyola Marymount University, Mathematical Association of America

Modern Methods in Complex Analysis (AM-137), Volume 137 - The Princeton Conference in Honor of Gunning and Kohn. (AM-137)... Modern Methods in Complex Analysis (AM-137), Volume 137 - The Princeton Conference in Honor of Gunning and Kohn. (AM-137) (Paperback, Reissue)
Thomas Bloom, David W. Catlin, John P. D'Angelo, Yum-Tong Siu
R2,568 R2,391 Discovery Miles 23 910 Save R177 (7%) Ships in 12 - 19 working days

The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field.

The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.

An Introduction to Complex Analysis and Geometry (Hardcover): John P. D'Angelo An Introduction to Complex Analysis and Geometry (Hardcover)
John P. D'Angelo
R2,013 Discovery Miles 20 130 Ships in 12 - 19 working days

An Introduction to Complex Analysis and Geometry provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The book developed from courses given in the Campus Honors Program at the University of Illinois Urbana-Champaign. These courses aimed to share with students the way many mathematics and physics problems magically simplify when viewed from the perspective of complex analysis. The book begins at an elementary level but also contains advanced material.The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 through 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study.The 280 exercises range from simple computations to difficult problems. Their variety makes the book especially attractive.A reader of the first four chapters will be able to apply complex numbers in many elementary contexts. A reader of the full book will know basic one complex variable theory and will have seen it integrated into mathematics as a whole. Research mathematicians will discover several novel perspectives.

Inequalities from Complex Analysis (Hardcover): John P. D'Angelo Inequalities from Complex Analysis (Hardcover)
John P. D'Angelo
R1,313 Discovery Miles 13 130 Ships in 12 - 19 working days

Inequalities from Complex Analysis is a careful, friendly exposition of some rather interesting mathematics. The author begins by defining the complex number field; he gives a novel presentation of some standard mathematical analysis in the early chapters. The development culminates with some results from recent research literature. The book provides complete yet comprehensible proofs as well as some surprising consequences of the results. One unifying theme is a complex variables analogue of Hilbert's seventeenth problem. Numerous examples, exercises and discussions of geometric reasoning aid the reader. The book is accessible to undergraduate mathematicians, as well as physicists and engineers.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Unsteady Supersonic Combustion
Mingbo Sun, Hongbo Wang, … Hardcover R5,143 Discovery Miles 51 430
The Printmaker
Bronwyn Law-Viljoen Hardcover R300 R277 Discovery Miles 2 770
Modeling Approaches and Computational…
Shankar Subramaniam, S. Balachandar Paperback R4,171 Discovery Miles 41 710
Hauntings
Niq Mhlongo Paperback R280 R259 Discovery Miles 2 590
Natural Polymers in Wound Healing and…
Mahesh K. Sah, Naresh Kasoju, … Paperback R4,998 Discovery Miles 49 980
Making Sense of Clinical Examination of…
Douglas Model Paperback R1,266 Discovery Miles 12 660
Rubber Toughened Engineering Plastics
A.A. Collyer Hardcover R8,780 Discovery Miles 87 800
Persia and the Enlightenment
Cyrus Masroori, Whitney Mannies, … Paperback R3,010 Discovery Miles 30 100
Like Sodium In Water - A Memoir Of Home…
Hayden Eastwood Paperback  (1)
R354 Discovery Miles 3 540
An Anthology of the Cambridge Platonists…
Douglas Hedley, Christian Hengstermann Paperback R1,313 Discovery Miles 13 130

 

Partners