Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This book discusses low power techniques for millimeter wave transmitter IC. Considerations for the front-end design are followed by several implementation examples in the 60GHz band in CMOS down to 28nm technology. Additionally, the design and implementation details of digitally-modulated millimeter wave polar transmitters are presented.
This book describes the design of a receiver front-end circuit for operation in the 60GHz range in 90nm CMOS. Physical layout of the test circuit and post-layout simulations for the implementation of a test chip including the QVCO and the first stage divider are also presented. The content of this book is particularly of interest to those working on mm-wave frequency generation and signal reception.
Adaptive radio transceivers require a comprehensive theoretical framework in order to optimize their performance. Adaptive Low-Power Circuits for Wireless Communications provides this framework with a discussion of joint optimization of Noise Figure and Input Intercept Point in receiver systems. Original techniques to optimize voltage controlled oscillators and low-noise amplifiers to minimize their power consumption while maintaining adequate system performance are also provided. The experimental results presented at the end of the book confirm the utility of the proposed techniques.
Realizing maximum performance from high bit-rate and RF circuits requires close attention to IC technology, circuit-to-circuit interconnections (i.e., the interconnect') and circuit design. This volume covers each of these topics from theory to practice, with sufficient detail to help you produce circuits that are first-time right'. A thorough analysis of the interplay between on-chip circuits and interconnects is presented, including practical examples in high bit-rate and RF applications. Optimum interconnect geometries for the distribution of RF signals are described, together with simple models for standard interconnect geometries that capture characteristic impedance and propagation delay across a broad frequency range.
Significant research effort has been devoted to the study and realization of autonomous wireless systems for wireless sensor and personal-area networking, the internet of things, and machine-to-machine communications. Low-power RF integrated circuits, an energy harvester and a power management circuit are fundamental elements of these systems. FM-UWB Transceivers for Autonomous Wireless Systems presents state-of-the-art developments in low-power FM-UWB transceiver realizations. The design, performance and implementation of prototype transceivers in CMOS technology are presented. A working hardware realization of an autonomous node that includes a prototype power management circuit is also proposed and detailed in this book. Technical topics include: Low-complexity FM-UWB modulation schemes Low-power FM-UWB transceiver prototypes in CMOS technology CMOS on-chip digital calibration techniques Solar power harvester and power management in CMOS for low-power RF circuits FM-UWB Transceivers for Autonomous Wireless Systems is an ideal text and reference for engineers working in wireless communication industries, as well as academic staff and graduate students engaged in electrical engineering and communication systems research.
This book describes the design of a receiver front-end circuit for operation in the 60GHz range in 90nm CMOS. Physical layout of the test circuit and post-layout simulations for the implementation of a test chip including the QVCO and the first stage divider are also presented. The content of this book is particularly of interest to those working on mm-wave frequency generation and signal reception.
Realizing maximum performance from high bit-rate and RF circuits requires close attention to IC technology, circuit-to-circuit interconnections (i.e., the interconnect ) and circuit design. Circuit and Interconnet Design for RF and High Bit-rate Applications covers each of these topics from theory to practice, with sufficient detail to help you produce circuits that are first-time right . A thorough analysis of the interplay between on-chip circuits and interconnects is presented, including practical examples in high bit-rate and RF applications. Optimum interconnect geometries for the distribution of RF signals are described, together with simple models for standard interconnect geometries that capture characteristic impedance and propagation delay across a broad frequency range. The analyses also covers single-ended and differential geometries, so that the designer can incorporate the effects of interconnections as soon as estimated interconnect lengths are available. Application of interconnect design is illustrated using a 12.5 Gb/s crosspoint switch example taken from a volume production part."
Well over a billion people are currently using cellular telephones, and this number is expected to grow to over two billion in the next few years. It is remarkable that a device that was considered a high-technology "toy" just a few years ago is now an indispensable feature of modern life. One of the key reasons for this remarkable transformation is the integration of all the radio functions of a cellular telephone onto a single inexpensive piece of silicon. This achievement is a result of innovations in design and process technology that allowed formerly discrete and separate devices to be integrated onto a common substrate. Now that this integration has been accomplished, the next challenge is to make these radio functions adaptive to their environment. This "adaptive" feature of wireless communications devices is just today becoming a reality, and Adaptive Low-Power Circuits for Wireless Communications represents one of the first comprehensive treatments of the subject. Adaptive radio transceivers require a comprehensive theoretical framework in order to optimize their performance. Adaptive Low-Power Circuits for Wireless Communications provides this framework with a discussion of joint optimization of Noise Figure and Input Intercept Point in receiver systems. Original techniques to optimize voltage controlled oscillators and low-noise amplifiers to minimize their power consumption while maintaining adequate system performance are also provided. The experimental results presented at the end of the book confirm the utility of the proposed techniques.
This book describes the digitally intensive time-domain architectures and techniques applied to millimeter-wave frequency synthesis, with the objective of improving performance and reducing the cost of implementation. Coverage includes system architecture, system level modeling, critical building block design, and digital calibration techniques, making it highly suitable for those who want to learn about mm-wave frequency generation for communication and radar applications, integrated circuit implementation, and time-domain circuit and system techniques.
|
You may like...
|