0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Temperature and Frequency Dependence of Complex Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement... Temperature and Frequency Dependence of Complex Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement (Hardcover, 1st ed. 2016)
Jonathan Breeze
R3,692 R3,252 Discovery Miles 32 520 Save R440 (12%) Ships in 12 - 17 working days

This thesis investigates the dielectric properties of metal-oxide ceramics at microwave frequencies. It also demonstrates for the first time that a theory of harmonic phonon coupling can effectively predict the complex permittivity of metal oxides as a function of temperature and frequency. Dielectric ceramics are an important class of materials for radio-frequency, microwave and emergent terahertz technologies. Their key property is complex permittivity, the real part of which permits the miniaturisation of devices and the imaginary part of which is responsible for the absorption of electromagnetic energy. Absorption limits the practical performance of many microwave devices such as filters, oscillators, passive circuits and antennas. Complex permittivity as a function of temperature for low-loss dielectrics is determined by measuring the resonant frequency of dielectric resonators and using the radial mode matching technique to extract the dielectric properties. There have been only a handful of publications on the theory of dielectric loss, and their predictions have often been unfortunately unsatisfactory when compared to measurements of real crystals, sometimes differing by whole orders of magnitude. The main reason for this is the lack of accurate data for a harmonic coupling coefficient and phonon eigenfrequencies at arbitrary q vectors in the Brillouin zone. Here, a quantum field theory of losses in dielectrics is applied, using results from density functional perturbation theory, to predict from first principles the complex permittivity of metal oxides as functions of frequency and temperature.

Temperature and Frequency Dependence of Complex Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement... Temperature and Frequency Dependence of Complex Permittivity in Metal Oxide Dielectrics: Theory, Modelling and Measurement (Paperback, Softcover reprint of the original 1st ed. 2016)
Jonathan Breeze
R3,276 Discovery Miles 32 760 Ships in 10 - 15 working days

This thesis investigates the dielectric properties of metal-oxide ceramics at microwave frequencies. It also demonstrates for the first time that a theory of harmonic phonon coupling can effectively predict the complex permittivity of metal oxides as a function of temperature and frequency. Dielectric ceramics are an important class of materials for radio-frequency, microwave and emergent terahertz technologies. Their key property is complex permittivity, the real part of which permits the miniaturisation of devices and the imaginary part of which is responsible for the absorption of electromagnetic energy. Absorption limits the practical performance of many microwave devices such as filters, oscillators, passive circuits and antennas. Complex permittivity as a function of temperature for low-loss dielectrics is determined by measuring the resonant frequency of dielectric resonators and using the radial mode matching technique to extract the dielectric properties. There have been only a handful of publications on the theory of dielectric loss, and their predictions have often been unfortunately unsatisfactory when compared to measurements of real crystals, sometimes differing by whole orders of magnitude. The main reason for this is the lack of accurate data for a harmonic coupling coefficient and phonon eigenfrequencies at arbitrary q vectors in the Brillouin zone. Here, a quantum field theory of losses in dielectrics is applied, using results from density functional perturbation theory, to predict from first principles the complex permittivity of metal oxides as functions of frequency and temperature.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Sudocrem Skin & Baby Care Barrier Cream…
R70 Discovery Miles 700
Efekto Karbadust Insecticide Dusting…
R54 Discovery Miles 540
Nasal Cannula - Adult
R12 Discovery Miles 120
Everlotus CD DVD wallet, 72 discs
 (1)
R129 R99 Discovery Miles 990
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, … Blu-ray disc  (1)
R131 R91 Discovery Miles 910
Kendall Office Chair (Light Grey)
R1,699 R1,346 Discovery Miles 13 460
Conwood Juliet Vanity Case (Black)
R606 Discovery Miles 6 060
Nintendo Switch OLED Edition Console…
R9,499 R8,399 Discovery Miles 83 990
Stabilo Arty Creative Set - Brush Pens…
R669 Discovery Miles 6 690
Fly Repellent ShooAway (White)
 (3)
R349 R299 Discovery Miles 2 990

 

Partners