0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (3)
  • R2,500 - R5,000 (3)
  • -
Status
Brand

Showing 1 - 6 of 6 matches in All Departments

Python Programming for Data Analysis (Hardcover, 1st ed. 2021): Jose Unpingco Python Programming for Data Analysis (Hardcover, 1st ed. 2021)
Jose Unpingco
R2,527 Discovery Miles 25 270 Ships in 12 - 19 working days

This textbook grew out of notes for the ECE143 Programming for Data Analysis class that the author has been teaching at University of California, San Diego, which is a requirement for both graduate and undergraduate degrees in Machine Learning and Data Science. This book is ideal for readers with some Python programming experience. The book covers key language concepts that must be understood to program effectively, especially for data analysis applications. Certain low-level language features are discussed in detail, especially Python memory management and data structures. Using Python effectively means taking advantage of its vast ecosystem. The book discusses Python package management and how to use third-party modules as well as how to structure your own Python modules. The section on object-oriented programming explains features of the language that facilitate common programming patterns. After developing the key Python language features, the book moves on to third-party modules that are foundational for effective data analysis, starting with Numpy. The book develops key Numpy concepts and discusses internal Numpy array data structures and memory usage. Then, the author moves onto Pandas and details its many features for data processing and alignment. Because strong visualizations are important for communicating data analysis, key modules such as Matplotlib are developed in detail, along with web-based options such as Bokeh, Holoviews, Altair, and Plotly. The text is sprinkled with many tricks-of-the-trade that help avoid common pitfalls. The author explains the internal logic embodied in the Python language so that readers can get into the Python mindset and make better design choices in their codes, which is especially helpful for newcomers to both Python and data analysis. To get the most out of this book, open a Python interpreter and type along with the many code samples.

Python for Signal Processing - Featuring IPython Notebooks (Hardcover, 2014 ed.): Jose Unpingco Python for Signal Processing - Featuring IPython Notebooks (Hardcover, 2014 ed.)
Jose Unpingco
R3,884 Discovery Miles 38 840 Ships in 12 - 19 working days

This book covers the fundamental concepts in signal processing illustrated with Python code and made available via IPython Notebooks, which are live, interactive, browser-based documents that allow one to change parameters, redraw plots, and tinker with the ideas presented in the text. Everything in the text is computable in this format and thereby invites readers to "experiment and learn" as they read. The book focuses on the core, fundamental principles of signal processing. The code corresponding to this book uses the core functionality of the scientific Python toolchain that should remain unchanged into the foreseeable future. For those looking to migrate their signal processing codes to Python, this book illustrates the key signal and plotting modules that can ease this transition. For those already comfortable with the scientific Python toolchain, this book illustrates the fundamental concepts in signal processing and provides a gateway to further signal processing concepts.

Python for Signal Processing - Featuring IPython Notebooks (Paperback, Softcover reprint of the original 1st ed. 2014): Jose... Python for Signal Processing - Featuring IPython Notebooks (Paperback, Softcover reprint of the original 1st ed. 2014)
Jose Unpingco
R3,469 Discovery Miles 34 690 Ships in 10 - 15 working days

This book covers the fundamental concepts in signal processing illustrated with Python code and made available via IPython Notebooks, which are live, interactive, browser-based documents that allow one to change parameters, redraw plots, and tinker with the ideas presented in the text. Everything in the text is computable in this format and thereby invites readers to "experiment and learn" as they read. The book focuses on the core, fundamental principles of signal processing. The code corresponding to this book uses the core functionality of the scientific Python toolchain that should remain unchanged into the foreseeable future. For those looking to migrate their signal processing codes to Python, this book illustrates the key signal and plotting modules that can ease this transition. For those already comfortable with the scientific Python toolchain, this book illustrates the fundamental concepts in signal processing and provides a gateway to further signal processing concepts.

Python for Probability, Statistics, and Machine Learning (Paperback, 2nd ed. 2019): Jose Unpingco Python for Probability, Statistics, and Machine Learning (Paperback, 2nd ed. 2019)
Jose Unpingco
R1,798 Discovery Miles 17 980 Ships in 10 - 15 working days

This book, fully updated for Python version 3.6+, covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. All the figures and numerical results are reproducible using the Python codes provided. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Detailed proofs for certain important results are also provided. Modern Python modules like Pandas, Sympy, Scikit-learn, Tensorflow, and Keras are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This updated edition now includes the Fisher Exact Test and the Mann-Whitney-Wilcoxon Test. A new section on survival analysis has been included as well as substantial development of Generalized Linear Models. The new deep learning section for image processing includes an in-depth discussion of gradient descent methods that underpin all deep learning algorithms. As with the prior edition, there are new and updated *Programming Tips* that the illustrate effective Python modules and methods for scientific programming and machine learning. There are 445 run-able code blocks with corresponding outputs that have been tested for accuracy. Over 158 graphical visualizations (almost all generated using Python) illustrate the concepts that are developed both in code and in mathematics. We also discuss and use key Python modules such as Numpy, Scikit-learn, Sympy, Scipy, Lifelines, CvxPy, Theano, Matplotlib, Pandas, Tensorflow, Statsmodels, and Keras. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowledge of Python programming.

Python Programming for Data Analysis (Paperback, 1st ed. 2021): Jose Unpingco Python Programming for Data Analysis (Paperback, 1st ed. 2021)
Jose Unpingco
R1,507 Discovery Miles 15 070 Ships in 12 - 19 working days

This textbook grew out of notes for the ECE143 Programming for Data Analysis class that the author has been teaching at University of California, San Diego, which is a requirement for both graduate and undergraduate degrees in Machine Learning and Data Science. This book is ideal for readers with some Python programming experience. The book covers key language concepts that must be understood to program effectively, especially for data analysis applications. Certain low-level language features are discussed in detail, especially Python memory management and data structures. Using Python effectively means taking advantage of its vast ecosystem. The book discusses Python package management and how to use third-party modules as well as how to structure your own Python modules. The section on object-oriented programming explains features of the language that facilitate common programming patterns. After developing the key Python language features, the book moves on to third-party modules that are foundational for effective data analysis, starting with Numpy. The book develops key Numpy concepts and discusses internal Numpy array data structures and memory usage. Then, the author moves onto Pandas and details its many features for data processing and alignment. Because strong visualizations are important for communicating data analysis, key modules such as Matplotlib are developed in detail, along with web-based options such as Bokeh, Holoviews, Altair, and Plotly. The text is sprinkled with many tricks-of-the-trade that help avoid common pitfalls. The author explains the internal logic embodied in the Python language so that readers can get into the Python mindset and make better design choices in their codes, which is especially helpful for newcomers to both Python and data analysis. To get the most out of this book, open a Python interpreter and type along with the many code samples.

Python for Probability, Statistics, and Machine Learning (Hardcover, 3rd ed. 2022): Jose Unpingco Python for Probability, Statistics, and Machine Learning (Hardcover, 3rd ed. 2022)
Jose Unpingco
R2,281 Discovery Miles 22 810 Ships in 9 - 17 working days

Using a novel integration of mathematics and Python codes, this book illustrates the fundamental concepts that link probability, statistics, and machine learning, so that the reader can not only employ statistical and machine learning models using modern Python modules, but also understand their relative strengths and weaknesses. To clearly connect theoretical concepts to practical implementations, the author provides many worked-out examples along with "Programming Tips" that encourage the reader to write quality Python code. The entire text, including all the figures and numerical results, is reproducible using the Python codes provided, thus enabling readers to follow along by experimenting with the same code on their own computers. Modern Python modules like Pandas, Sympy, Scikit-learn, Statsmodels, Scipy, Xarray, Tensorflow, and Keras are used to implement and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, interpretability, and regularization. Many abstract mathematical ideas, such as modes of convergence in probability, are explained and illustrated with concrete numerical examples. This book is suitable for anyone with undergraduate-level experience with probability, statistics, or machine learning and with rudimentary knowledge of Python programming.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Can The Prizes Still Glitter?
Hugo Burgh Paperback R504 R465 Discovery Miles 4 650
The Evolution of the Property Relation…
A. Davis Hardcover R3,531 Discovery Miles 35 310
Catch-up and Radical Innovation in…
Xielin Liu, Xiao Wang, … Hardcover R2,511 Discovery Miles 25 110
Land Investment and the Predevelopment…
Alan Rabinowitz Hardcover R2,793 Discovery Miles 27 930
The 5 AM Club - Own Your Morning…
Robin Sharma Paperback  (5)
R390 R348 Discovery Miles 3 480
Global Youth Unemployment - History…
Ross Fergusson, Nicola Yeates Hardcover R3,345 Discovery Miles 33 450
Bricks For Chicks - Property Investment…
Tanya Haffern Paperback R230 R213 Discovery Miles 2 130
Crofton's Prime Residential Almanac 2019…
Matt Crofton, Dan Crofton Hardcover R4,300 Discovery Miles 43 000
The Governance of Global Industry…
Karsten Ronit Hardcover R2,964 Discovery Miles 29 640
Comity - Multilateralism in the New Cold…
Frank Vibert Hardcover R2,352 Discovery Miles 23 520

 

Partners