Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.
Resolution of Singularities has long been considered as being a difficult to access area of mathematics. The more systematic and simpler proofs that have appeared in the last few years in zero characteristic now give us a much better understanding of singularities. They reveal the aesthetics of both the logical structure of the proof and the various methods used in it. The present volume is intended for readers who are not yet experts but always wondered about the intricacies of resolution. As such, it provides a gentle and quite comprehensive introduction to this amazing field. The book may tempt the reader to enter more deeply into a topic where many mysteries - especially the positive characteristic case - await to be disclosed.
|
You may like...
|